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Abstract

Demand for mobility is growing, and traffic on roads has increased substantially, leading
to suboptimal traffic flow and congestion. Road pricing can encourage vehicles to change
their behavior by charging for road use. Because traffic is not static, dynamic road pricing
can help dynamically control traffic. Reinforcement Learning is an effective approach to
optimizing the performance of a system. It has already been applied to control traffic sig-
nals and has recently found an application in dynamic road pricing for traffic optimization.
We survey recent solutions and find that the methods proposed demonstrate the useful-
ness of reinforcement learning for road pricing. We compared how common challenges
in reinforcement learning were approached in the works. Challenges which remain little
explored are generalizability and scalability of solution approaches. Approaches to partial
observability, credit assignment and non-stationarity are not in all cases taking full account
of existing solutions for these common challenges. We further note the need for standard-
ized benchmarks to allow comparisons between the performance of the provided solutions.

Keywords Reinforcement Learning - Pricing and Resource Allocation - Optimization -
Simulation - Transportation

1 Introduction
As traffic on road networks grows, so too does traffic congestion (Mokbel et al. 2024; Prieto

Curiel et al. 2021). Congestion occurs when vehicles moving on a road network are forced
to reduce their speed as a result of the presence of other vehicles. Congestion has significant
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productivity, environmental, and health consequences, therefore it is important to be able
to manage it.

Intelligent Transportation Systems (Haydari and Yilmaz 2020) (ITS) are systems that
have been designed to optimize traffic by reducing the presence of congestions. One type
of such systems are those imposing constraints to which vehicles must adhere. Examples
include traffic signals, ramp metering, or speed limits. Another type is those that provide
incentives for vehicles to follow a specific behavior. Examples include route guidance and
road pricing.

Road pricing is the mechanism to determine the tolls that a vehicle must pay to use a
specific road at a specific time. It is a mechanism that can contribute to alleviating conges-
tion. This is based on the insight that people tend to make choices to optimize their utility,
taking into account costs and benefits of their actions. In contrast to the other ITS mecha-
nisms, road pricing uses a price mechanism, with the benefits of clarity, universality and
efficiency (Lindsey and Verhoef 2001). Its potential to influence vehicles’ route choice and
travel mode were advocated early on from an economic perspective (Beckmann et al. 1956;
Knight 1924; Pigou 1924; Vickrey 1969). Farias et al. (2024) provide a recent comprehen-
sive review of dynamic pricing for toll roads in the U.S. In the literature, there have been
variations of this idea under the term of congestion pricing, congestion charging, tolling, toll
charging, or road pricing. We use the term road pricing. With road pricing, roads with higher
tolls tend to be less preferable to some of vehicle drivers. This means that, by controlling the
tolls, one may indirectly control the flow of vehicles on the road network.

Effects of road pricing may be unanticipated if vehicles change their behavior. Other
ITS, like ramp metering and variable speed limits, may also influence the effectiveness
of road pricing. Assuming that vehicles change their behavior if roads are priced and that
other mechanisms, like traffic signals and variable speed limits, are at play in road networks
as well, we note that the effects of road pricing may be unanticipated. Because of this, we
require a system that is able to learn from the effects of road pricing decisions and adjust
this accordingly. Given the inherent dynamic aspect of road pricing, it seems ideal for a
Reinforcement Learning approach.

Reinforcement Learning (RL) is a machine learning technique that learns agents to take
actions to optimize their performance. In RL, agents interact with an environment that can
be in a number of states. These agents want to achieve some objective. Agents take actions
according to a policy, which leads to a change in the state of the environment. Agents
learn by observing the effect of their actions in the environment through reward signals, to
improve the policy to an optimal one (Sutton and Barto 2018). RL methods can use tables
or functions. If these functions are neural networks we associate this with deep learning and
correspondingly use the term Deep RL.

Despite its potential, RL has received limited attention within the research community
for road pricing applications. This is a notable gap, as RL presents a strong candidate for
optimizing the tolling process, alongside offering numerous compelling research chal-
lenges. Traditional approaches like fixed tolling, rule-based heuristics or optimization-based
techniques often rely on access to tractable traffic models and assume stationary demand
patterns. However, in reality, traffic systems are dynamic, stochastic and are subject to inci-
dents and human behavior, which evolves over time in response to (toll-) pricing but also
other policies and control measures. These limitations hinder the effectiveness of conven-
tional methods in practice.
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The complex and analytically intractable nature of traffic propagation, influenced by a
multitude of factors, makes the model-free learning capabilities of RL particularly well-
suited for dynamic tolling optimization. By learning from real-time traffic data, RL agents
can develop effective tolling policies that incentivize behavioral changes in road users
through price adjustments. RL mechanisms can also adapt online to evolving traffic patterns
and non-stationary conditions like incidents or changes in vehicle preferences.

Furthermore, the application of RL to road pricing raises significant research questions
concerning scalability, generalization, and off-line learning. The interactions between mul-
tiple road pricing agents, diverse road user types (including human-driven and autonomous
vehicles), and agents controlling other traffic elements (such as traffic signals, ramp meters,
and variable speed limits) warrant in-depth investigation.

While RL has been extensively explored in the context of traffic signal control, its appli-
cation to road pricing remains relatively underdeveloped. We attribute this to principal
differences between the two domains. Traffic signal control typically benefits from more
immediate and localized feedback, as well as greater availability of data and standardized
interfaces for widely used simulation platforms. In contrast, RL for road pricing involves
challenges such as delayed and indirect feedback, stochastic vehicle behavior, limited access
to suitable datasets, and a lack of standardized interfaces. These factors have likely contrib-
uted to the slower adoption of RL in this domain. However, they also highlight opportunities
for impactful research.

By addressing these, and the other challenges noted above, this survey aims to under-
score and advance the use of RL in road pricing and stimulate further research in this prom-
ising domain.

1.1 Recent related surveys

Various works in the wider Intelligent Transportation Systems domain exist which use RL to
solve traffic problems. Illustrative recent surveys covering such works are listed in Table 1.
As motivated in the previous section, road pricing solutions cannot occur in isolation, but
ultimately need to take account of other ITS mechanisms. We distinguish therefore two
categories: surveys providing an overview of the use of RL in the wider ITS domain and
surveys focusing on the use of RL in a specific ITS domain like traffic signal control.

1.2 Contribution of this survey
Our contributions can be summarized as follows:

o We describe a traffic model and give an introduction to road pricing. We provide a
high level overview of RL and different algorithms that have been used in the surveyed
works.

e We formulate the problem how traffic can be managed by road pricing using RL and
identify important specific research challenges. At the best of our knowledge this struc-
tured approach is unique.

o We analyze how RL is applied to solve the road pricing problem and what objectives are
achieved and which challenges are addressed.

e Based on our model and the scope of the various works we identify the most important
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Table 1 Surveys on ITS solutions through Reinforcement Learning on multiple aspects of a road network
(top) or on specific aspects of the road network collectively (bottom). A survey for RL in road pricing does
not yet exist

References Features and relevance

Han et al. (2023) Provides a comprehensive overview of RL based traffic control strategies, high-
lighting that few studies separate learning and testing. Identifies challenges for
field implementation

Haydari and Yilmaz Categorizes application types, control methods and RL algorithms. Both for

(2020) Single Agent and Multi Agent RL. Strong focus on traffic signal controls

Farazi et al. (2021) Broad overview of RL in the wider transportation domain. Includes mapping
of problems to RL methods. Highlights simultaneous decision making of both
vehicles and infrastructure

Yan et al. (2022) A comprehensive review of RL in logistics and supply chain management,
including the Vehicle Routing Problem and urban logistics. Highlights the need
to use different agents in complex cases

Schmidt et al. (2022) A review of MARL in autonomous mobility in four application areas: traffic con-
trol, autonomous vehicles, resource optimization and unmanned aerial vehicles

Saharan et al. (2020)  Dynamic pricing techniques for ITS, importance of evaluation parameters,
limitations of techniques

Lombardi et al. (2021) Overview of design, simulation, implementation and evaluation of tolling

schemes

Wei et al. (2021) Recent advances in the use of RL for traffic signal control, including analysis of
environments, experiment settings and evaluation of approaches

Kumar and Raubal Traffic congestion alleviation using Deep Learning. Systematic overview of

(2021) recurring and non-recurring congestion types including RL solutions

Qin et al. (2022) RL in ride sharing business processes. Amongst other for pricing and dynamic
routing

Bogyrbayeva et al. Machine Learning to Solve the Vehicle Routing Problems. Covers RL next to

(2024) DL, heuristics and combinations

challenges. We provide additional areas for future work.
1.3 Methodology and structure of the survey

Research papers were identified through searches for reinforcement learning, tolling, road
pricing, congestion pricing and congestion charging within prominent conference proceed-
ings and journals (as indexed by Scopus, Google Scholar, DBLP and similar sources). We
excluded works that were not sufficiently specific, such as those using pricing for electric
vehicle charging as an incentive for changing user behavior or those considering the rela-
tionship with autonomous vehicles. This process yielded 19 works, specifically addressing
RL and road pricing, for inclusion in this survey with 17 selected for detailed analysis.
We used as source for the different theories the original and seminal papers as they are
referenced in traffic and road pricing published works. For reinforcement learning theory,
we consulted and included original works and existing surveys. The total number of works
included in this survey is 144.

The remainder of this survey is structured as follows. Preliminaries and background are
provided in three sections. Section 2 introduces modeling traffic and three traffic models
which provide a basis for analyzing the traffic models in the works on RL and road pricing.
In Sect. 3 we introduce road pricing. Section 4 provides a high level introduction to RL and
a detailed introduction is provided in Appendix A. Section 5 formulates the traffic conges-
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tion problem in a reinforcement learning setup and, in the context of pricing, important
research challenges. In the sequel, Sect. 6 discusses recent works applying reinforcement
learning as solutions to the problem defined in Sect. 5. Section 7 describes how the chal-
lenges have been addressed and future research directions for reinforcement learning in the
road pricing domain. Section 8 concludes the survey.

2 Modeling traffic
2.1 Traffic model - network

We assume that we operate on a network (Dafermos and Sparrow 1969). A network G(N, L)
is a graph where N is a set of nodes and L is a set of directed edges between nodes in N,
referred to as links. A link is typically denoted as a pair of nodes, the first being referred
to as the start-point and the second as the end-point, (s, €), or we may write /(%) instead.
A network models a real life network, where the nodes correspond to real road junctions
and the links to the real roads that connect the different junctions. In some cases synthetic
networks are used, that are more abstract, to illustrate a concept or idea. A network is com-
monly governed by a network authority, which can impose a range of centralized and/or
decentralized controls. A path is a sequence of links where the end-point of each link (apart
from the one of the last) is the start-point of the subsequent link. The start-point of the first
link and the end-point of the last are the origin and destination of the path, respectively.
A path from a node o to a node d is denoted as p°~¢, that is, p°~d={1(=1) [(zr.22)
[{#n-12n) [{#n.d)} Note that there may be more than one path from an origin node o to a
destination node d. The set of such paths is denoted as P°~%. We denote by P¢ the set of
all possible paths in a network G.

2.2 Traffic model - vehicles - state and demand

Vehicles move on the network. Let V be the universe of vehicles. At time ¢ a vehicle v is in
position s on a link, moving towards its destination node 0. We assume the final destination
to be always a node, that is they never end in the middle of a road. The state of a vehicle v
on the network at a specific time ¢ can be modeled as a tuple (¢, v, [b0) s p”"d), where
1¢8:9) s the link on which the vehicle is found, s is the position of the vehicle on the link /,
and p°~ is the path that the vehicle intends to follow after it reaches the end-point of the
link 1¢®-°) in order to arrive to its final destination d. Although time is a continuous quantity,
we consider discrete ordered time pointst = 0,1,...,7. Let T denote the set of these time
points. Note that we use ¢t as # is reserved for episode steps, to be introduced in Section A.

The set of all the states of all vehicles at all different time points, denoted as D, repre-
sents the amount of traffic on the network. D is referred to as traffic states set. We will use
the notation D[cond] to select the states that satisfy certain conditions cond. For instance,
D[g§5/\l<’~~> —] denotes the states of the vehicles before time ¢t < 5 on the link /. If we assume
an analysis period of traffic [t,,,) and consider an origin o and destination d we define
demand D,4(t,,t,) as the number of vehicles willing to travel from o to d during that
period.
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2.3 Link and vehicle properties

Every link in the network has a set of properties. There are three types of such properties.
First, there are properties related to physical characteristics of the link that are naturally
invariant. An example is the length /e of the link. Second, there are properties that are invari-
ant as the traffic progresses, but the network authority has the ability to explicitly set them
to a different value. Examples of these adaptable properties include the maximum capacity
of vehicles allowed on a link, the maximum speed limit w,;,4,, Or a possible toll price 7. The
network authority that controls these values may adapt them when it sees fit, or may have
them also change based on some function of time, for example having higher tolls during
business hours and much lower tolls after midnight. Finally there are characteristics that
depend on the traffic at each specific moment, which means that these characteristics are
dynamically changing over time. Illustrative examples are the density k (vehicles/m), the
average speed of vehicles u (m/s) and the flow ¢ (vehicles/s). The values of these dynamic
properties of the links over time are referred to as a traffic pattern.

A vehicle also has some invariant properties, for example its maximum speed, maximum
acceleration/deceleration, and length. Dynamic properties are driving speed, steering direc-
tion, and position.

2.4 Cost function and route and departure time choice

When a vehicle is about to start moving from a point in the network towards a final destina-
tion node, it selects a route. A number of different parameters are taken into consideration,
like the number of vehicles on the network, their speed, as well as other preferences of the
vehicle.

To model this situation, we assume the existence of a cost function which a vehicle wants
to minimize. It provides each vehicle a quantitative value, the predicted cost, for each pos-
sible route from the current position until the destination. The function takes into consid-
eration the physical characteristics of the network, e.g. the number of links to traverse, the
length or travel time at maximum allowed speed of links, in order to opt for shortest routes.
It may also consider the dynamic characteristics like the observed traffic in order to opt for
less congested links. It is also possible that the function takes the experienced costs into
account which is their history of costs experienced on the network. In most cases the ele-
ments contributing to the cost are transformed to a single number. Thus, in its most general
form the cost function for a vehicle v is ¢, : P€ x D — R. While this function, consisting
of two arguments, is defined on all possible paths P“ and all history is kept in I, it is in
practice always applied to a small subset. For example, at decision time, a vehicle could
assume the cost of traversing a link to be the free flow travel time (time required when no
other vehicles are present). Often the formula is assumed the same for the vehicles, but var-
ies in a set of parameters that identify how much the various factors affect the final costs. For
instance a multiplication factor converting travel time to money, commonly called value of
time (vot) is usually not homogeneous across vehicles. We illustrate the use of the abstract
cost function ¢, by relating it to the link cost function (11, Sect. 6.2.1) from Chen et al.
(2018) which provides practical context. Recall the cost function:

¢y =P% xD—R. (1)
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Assume that vehicle v chooses a path p € P at decision time . The path p is decomposed
in its constituent links: p = {1{®®1) [{ere2)  p{En—ven) plend)]
We now consider the per-link cost (as defined in Sect. 6.2.1):

c(l,t) = tt(l,t) xvot + 7(1, ). (11)

This depends on the toll 7(I,%) and ¢t(I,t) which is itself a function of Dy, ;j the state of
traffic on that link at that time, which depends on the paths chosen by other vehicles, which
were based on their evaluations, based on ). We now evaluate the cost for the full path by
aggregating the per-link costs:

Cv(p7D) = ch(l’t)' (2)

lep

Substituting the expression for ¢, (I, 1) we get:

cy(p, D) = Ztt(l,;) xvot + 7(1,t). 3)

lep

Each tt(l,t) is estimated based on vehicle speeds on link / at time ¢, which recursively
depends on the network-wide vehicle distribution on prior decisions of other vehicles. Hence
the cost function incorporates, albeit implicitly, the full network traffic pattern encoded in D.

The computation of the cost and the planning of the route to follow can take place either
once when starting its route and keep the route that was decided, or may be recomputed
every time the vehicle is at a node. The choice of the path based on the cost may be deter-
ministic or stochastic. In case of stochastic path choice, a softmax function is commonly
used to translate path costs to probabilities:

E_chi

Zj e_gc“j

where 0 is a scaling parameter and c,, represents the cost for vehicle v when taking path i.
In some cases the departure time is not fixed, meaning the vehicle can opt to depart earlier
or later, or even refrain from departing. We denote this process route and departure time
choice as R. For a network G and a set of vehicles V with a traffic demand set D we refer to
the tuple (G, V, D) as a traffic network.

Pv; = ) (4)

2.5 Network loading

At any new time point, the vehicles that are on the network need to move towards their
planned destinations as dictated by their planned paths. This process is known as network
loading, and is denoted as M. Given route choices for vehicles, network loading provides
the resulting route travel times. After a network loading step, the network has new charac-
teristics, and as such, a path refresh phase follows where the planned routes of the different
vehicles get recalculated. After the network loading and the planned route refresh phase, the
network gets into a new state:
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Dii=t11) = RIM(Dyi=)))- (%)

See Fig. 1 (modified from Boyles et al. (2023), Joksimovic and Bliemer (2005)) for an
illustration.

There are different types of model for network loading, to represent the movement of
vehicles on a network of which we will describe three types. In a microscopic model, every
vehicle is considered an individual entity and its behavior, characteristics and interactions
are studied independently. Characteristics like position, speed, and distance from other
vehicles are computed for each vehicle individually. In each network loading step, these
characteristics are updated for every vehicle. For instance, in the Intelligent Driver Model
(IDM) (Treiber et al. 2000), the acceleration of a vehicle is computed using vehicle and other
vehicles’ characteristics, leading to its position update. Other microscopic models (Ahmed
etal. 2021; Chowdhury et al. 2000; Diallo et al. 2021; Knorr 2013; Nguyen et al. 2021) exist
but the main principle to calculate vehicle movement remains the same. Traffic simulators
which use IDM are among other SUMO (Lopez et al. 2018), CityFlow (Zhang et al. 2019)
and CBLab (Liang et al. 2022). Widely used commercial software for microscopic traffic
simulation using different models are PTV VISSIM (Wiedemann model), Paramics (Frit-
zsche model) and AIMSUM (Gipps model) (Ahmed et al. 2021).

To study traffic in a dynamic macroscopic representation, the Cell Transmission Model
(CTM) (Daganzo 1994) is often used. A link is divided into a finite number of sections (called
cells), and the traffic is studied by evaluating each cell at every time step, by transferring
part of the traffic from each cell to the next. A key distinction from the microscopic model
is that this model propagates vehicles not individually but in the aggregate. The CTM has
its origins in a hydrodynamic model of traffic flow, the Lighthill-Whitham-Richards (LWR)
model (Lighthill and Whitham 1955; Richards 1956). It uses three concepts: traffic flow
q, speed u, density k, and their relationship on a link, the fundamental diagram, ¢ = uk. A
corresponding node model for CTM facilitates connections, merges and diverges (Daganzo
1995; Tampere et al. 2011).

A third model is the static macroscopic model. In a static macroscopic model the conges-
tion properties on a link are usually described using a Link Performance Function (LPF).
This function expresses the average or steady state travel time on a link as a function of
the traffic flow on the link. The most commonly used LPF is from the Bureau of Pub-
lic Roads (United States Bureau of Public Roads 1964). Detailed information on dynamic
macroscopic models (Chiu et al. 2011) and on static models (Verhoef 1999) can be found
elsewhere. Other works make comparisons between the various models (Hoogendoorn and
Bovy 2001; Storani et al. 2021; Wageningen-Kessels et al. 2015).

Fig. 1 Traffic Model without Toll

ROUTE AND
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FLOWS
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2.6 Objectives and equilibria

One objective of the network authority is to optimize the performance, measured by some
metric, of a traffic network. There are different metrics that can be considered for that pur-
pose. One is the total travel time, the total time needed for all the vehicles to arrive at their
destination, another the overall distance traveled by all vehicles, yet another the rate in
which the vehicles arrive at their intended destination. The metric is calculated by some
objective function J. We assume that the network authority can choose to apply means to
influence the traffic. Now assume that every vehicle selects the route that minimizes its cost
function c,. Over time, traffic is then likely to move to a situation in which no vehicle can
reduce its cost by choosing another path (Wardrop 1952). This situation is called a User
Equilibrium or Dynamic User Equilibrium (Chiu et al. 2011) in case of dynamic traffic
assignment. It may imply that some links are congested, while others are underutilized.

Assume now that the network authority has the objective of minimizing the total cost and
has full control over the vehicle route choices. In that case, diverting some vehicles to other
paths, non-optimal for themselves, can help alleviate the congestion and improve the traf-
fic in the network resulting in minimization of the total travel time. This situation in which
the overall network traffic is optimized is known as the (Dynamic) Social Optimal equilib-
rium (Wardrop 1952). However, in most cases, a network authority has not full control and
will need to apply other means to influence vehicles to change their paths.

There are various means by which traffic can be controlled, implying vehicles to follow
routes that are not always the most optimal for them. One is through hard restrictions, which
divert vehicles towards specific links or restrict their speed (traffic signaling, traffic lights or
speed limits). For this to materialize, the network authority needs to have a global view of
the network and the ability to implement these controls. Once implemented, these controls
can either operate decentralized, cooperatively or not, or centralized. Another way to affect
traffic is to let the final decision be made to individual vehicles, but at the same time provid-
ing incentives for them to choose routes that will improve overall network traffic, even if for
the individual vehicle the route is not the most beneficial. The charging of a toll for road use
is an example of such an incentive.

3 Road pricing

3.1 Why road pricing?

Road pricing (Tsekeris and Vof3 2009) can be used to manage travel demand, raise revenues
for funding transport investment or a combination of both. Just as other demand manage-
ment tools noted in Sect. 2, road pricing builds on the assumption that people weigh the cost
and benefits of their actions and take their actions to maximize their utility.

3.2 Modeling road pricing

To illustrate the workings of road pricing we describe first best pricing, time dependent road

pricing and second best pricing. First best road pricing is termed first best because it relies
on a highly idealized scenario, assuming, among other things, that tolls are charged on all
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roads with perfectly differentiated prices. It is usually illustrated with a single road (Verhoef
2002). All vehicles have the same cost function ¢, (g) for this road and the demand function
d(q) is also dependent on ¢. Traffic flow, speed and density are independent of time and uni-
form along the road. The User Equilibrium which will materialize in this case does not take
account of the costs vehicles impose on each other. To mitigate this, a Marginal Cost Toll
can be derived and applied, leading to a Social Optimal equilibrium. This toll is also known
as a Pigouvian tax (Knight 1924; Lindsey and Verhoef 2001; Pigou 1924). A detailed analy-
sis using variations of the cost curve (for example, when it is extended with a backward
bending part because of continuous congestion) is given by Verhoef (1999). Furthermore,
marginal cost pricing for a single road, can also be applied to a general road network (Yang
and Huang 1998). We do not cover these cases here.

In a time dependent model, the time-independent model is extended with a time-depen-
dent travel demand function and specifies how the flow changes over space and time.
Demand is assumed fixed (price independent), but vehicles are heterogeneous with respect
to their trip-timing as well as value of time. The private cost of a trip is (Arnott et al. 1993):

co(t) = T (t) + B(time early) + v(time late), (6)

where « is the vot, (3 is the unit cost for arriving early and ~y is the unit cost for arriving
late. The cost of arriving early or late is referred to as schedule delay cost and T as travel
time cost. We note the desired arrival time as t*. Time early is maz[0,t* — ¢ — T'(¢)] and
time late is maxz[0,t + T'(t) — t*]. Under certain conditions, vehicles cannot overtake each
other and tolls can vary freely over time (Arnott et al. 1993; Lindsey and Verhoef 2001), a
User Equilibrium and Social Optimal equilibrium can be calculated and tolls can be applied
to achieve this Social Optimal equilibrium. More variants of this model exist (Lindsey and
Verhoef 2001). First best pricing and time dependent models are often not feasible given
practical constraints (not all roads can be tolled), or information limitations (incomplete
information for vehicles).

Second best pricing methods (Arnott 2007; Ekstrom 2014; Tsekeris and Vo3 2009; Ver-
hoef 2000, 2002), are more realistic, as various constraints are taken into account. Examples
of second best pricing methods are pay lanes and cordon pricing in contrast to pricing every
road, the use of step tolls as opposed to smoothly time varying tolls and a fixed daily tolling
schedule rather than a schedule dependent on traffic conditions during the day. In relation to
this, we also distinguish static and dynamic road pricing (Fig. 3).

In static road pricing, toll prices are determined by analysis of historical and economic
data, without taking into account current traffic. In dynamic road pricing, tolls are deter-
mined by also taking into account current or anticipated congestion levels, and hence can
vary, based on the number of vehicles, their speed, and their location on the network (Cole
et al. 2003; Como and Maggistro 2021; Eliasson 2017; Genser and Kouvelas 2019, 2022;
Maheshwari et al. 2024; Nohekhan et al. 2021; Paccagnan et al. 2021; Pandey and Boyles
2019; Vickrey 1963).

Dynamic road pricing is a challenging task, as driver behavior on the network needs to be
continuously monitored and tolls need to be adjusted, with each having an immediate effect
on the other. Determining and setting prices is performed by toll agents
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Fig. 2 Traffic Model with Toll
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Fig. 3 Static and dynamic tolling of a single road
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3.3 Toll agents

Toll agents (ta) are charged with observing traffic on the network and determining tolls.
A model representing a traffic network with a toll agent is given in Fig. 2 (modified
from (Boyles et al. 2023), Joksimovic and Bliemer (2005)). The figure illustrates that toll
agents obtain information from the traffic system as a basis to determine the tolls to charge
for link use to vehicles. Toll agents can be given objectives by the network authority, for
example with respect to the flow on a link. If provided with a license the toll agents deter-
mine their own objective within the constraints of the license. For example to maximize
profit on a tolled link in which they invested.
We detail baseline objectives for toll agents. We use the following equation:

T= (¢xtt)+vx > ). %)

veV l'ep(v)

Here ¢ is a scaling parameter, often representing the vot, ##(v) the experienced travel time
of the vehicle, p(v) is the path which the vehicle has traversed, I’ a tolled link and 7 the
toll incurred when traversing that link. The baseline objectives are given in Table 2. When
considering Social Welfare, tolls are not taken into account as tolls are considered transfer
payments which remain internal to society (Mirzaei et al. 2018). If the average is taken over
the number of vehicles [V| we use ASTT and ASC.

On a network, one (global) or more (local) toll agents can operate (Fig. 4). In the latter
case each one covering a part of the network. Toll agents can work together to achieve the
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Table 2 Baseline objectives for ) W

toll t:

Ol agents Total System Travel Time (TSTT) 1 0
Total System Cost (TSC) vot 1
Social Welfare (SW) vot 0
Maximum Revenue (MR) 0 1

(a) Single agent for one (b) Single agent for mul- (c) Global agent for all (d) Multiple agents for
road tiple roads roads multiple roads

Fig.4 Example toll agent configurations

same objective or pursue their own objectives, leading to different levels of cooperation or
competition. When starting to set tolls, vehicles may take other decisions with respect to
their mode choice, departure time and route choice. This causes different traffic patterns
which the toll agents may not have anticipated causing them to either adjust their prices or
their tolling model.

In Sect. 3.2 we described how a toll is determined in the case of a first best pricing situ-
ation on a single link. To determine tolls for road pricing on networks, different methods
and technologies have been proposed (Palma and Lindsey 2011) using various coverage and
toll differentiation mechanisms. Joksimovic and Bliemer (2005) identifies a mechanism for
optimal toll design in a dynamic network with route and departure time choice. Dynamic
pricing for ITS surveyed in (Saharan et al. 2020) describe among other dynamic program-
ming, evolutionary optimization, swarm optimization and game theory based techniques.
A survey work (Lombardi et al. 2021) on model-based dynamic toll pricing presents an
overview of methods for price definition, simulation techniques and technology applica-
tions. Reinforcement Learning, which we cover next, is another mechanism to determine
toll prices for toll agents.

4 Reinforcement learning

Reinforcement learning (RL) is a computational framework wherein an agent learns to take
optimal decisions through direct interaction with an environment. The core interactive loop
consists of the agent observing the environment’s state, selecting an action and receiving
a reward signal. For the tolling problem, an action is, e.g., raising or lowering the toll on a
given road, while the reward could, e.g., be (inversely) related to the time it takes vehicles to
go from origin to destination. The agent’s goal is to develop a policy (a mapping from states
to actions) that maximizes the long-term cumulative reward.
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The standard formalism for this sequential decision-making problem is the Markov Deci-
sion Process (MDP), formally defined as a tuple (S, A, P, R) that represents the set S of all
states s, the set A of actions a, a transition probability function for the environment P, and
areward function R.

The central challenge in RL is to find an optimal policy 7, by learning value functions
(V(s) or Q(s, a)) which estimate expected cumulative rewards, or by directly optimizing
the policy itself. Solutions to MDPs are based on the Bellman equations, which provide
recursive relationships for value functions under a given policy (Sutton and Barto 2018).
In road pricing contexts specifically, RL enables the modeling of adaptive tolling strategies
in dynamic, uncertain traffic environments. For a detailed treatment of these foundational
concepts and algorithms, readers are directed to Appendix A.

RL algorithms are typically categorized into three main categories, all three have been
used for the tolling problem. Value-based methods (e.g., Q-learning), which focus on learn-
ing an accurate value function and are well-suited to problems with discrete action spaces.
In contrast, policy-based methods (e.g., policy gradient), directly search a policy which
make them suitable for handling continuous action spaces and learning stochastic policies.
Actor-Critic methods, which represent a powerful hybrid architecture where an actor (pol-
icy) learns which actions to take, and the critic (value function) evaluates the quality of that
action. Many state-of-the-art algorithms are based on this structure.

We further distinguish between model-free and model-based approaches. Model-free
methods learn directly from experience without ever creating an explicit model of the
environment’s dynamics (P and R). In contrast, model-based methods either use a known
model of the environment or first learn a model from experience and then use this model for
planning and policy optimization.

While traditional tabular methods for the above approaches were feasible in domains
with (relatively) small state and action spaces, they failed to scale to larger, complex prob-
lems. Deep Reinforcement Learning overcomes this limitation. Deep RL leverages deep
neural networks as universal function approximators to represent policies and/or value func-
tions. The integration of deep learning with reinforcement learning has enabled the field
to solve larger problems with high-dimensional state- and action spaces. This makes it an
essential tool to address modern real-world challenges such as the tolling problem analyzed
in this survey.

5 Problem formulation and research challenges

We will now formulate our problem statement and frame this in reinforcement learning
terminology.

Problem Given (G, V, D), a horizon H and an objective J find a policy = for a Toll Agent ta
to set toll prices on the links / so that J is optimized.

5.1 The road pricing problem in RL terminology

The road pricing problem can be formalized as:

@ Springer



65 Page 14 of 58 0. Vermeulen et al.

e Environment: the Traffic Network (G, V, D).
o Agent: the Toll Agent, ta.

In this road pricing problem the fa has an objective J (see Table 2) that it needs to achieve.
The road pricing problem is further formalized as a MDP:

e S:is the set of all states s. This is a representation of the current situation in the envi-
ronment: speed, travel times, flow, density on the links and so on. It may also include
information on nodes and information from other artefacts like speed limits, ramp me-
tering and traffic lights. State information is collected by the agent. If it consists of a
single number, without applying some function, we call it direct, otherwise composite.
The state s or observation o could also be subject to preprocessing. Preprocessing can
involve deep learning mechanisms like Graph Convolutional Networks (GCN) (Kipf
and Welling 2017) or transformers (Vaswani et al. 2017).

e A: is the set of all actions a. On the basis of state s the agent takes an action a. This
action a consists of setting new toll prices for one or more links in the Traffic Network
respectively. The actions, can either be the toll price chosen from a discrete set of prices,
from a certain price range, or adjustments to the toll price for one or more links. These
adjustments are made in accordance with the ta’s policy .

e P:is the transition probability function mapping from any state s to a next state s’ after
taking action a: P(s’|s, a). If a toll price is set, vehicles v will act on this price (and traf-
fic conditions), propagating the traffic flow by network loading (5). This will lead to a
new state. It is unlikely that P is known in a traffic network so the agent needs to learn
from experience.

e TR: the reward function provides a reward from the environment to the agent. The re-
ward signal could for example be the number of vehicles arriving periodically at a cer-
tain node, the average speed on a link, the density on a link (direct) or some combina-
tion of other values (composite). As the reward, and therefore return, are the signals to
evaluate for the fa if its actions contribute in a positive or negative way to its objective
J, it is therefore crucial that the reward signal is properly defined. Reward signals are
combined to produce the return, using a discount factor € [0, 1], averaging or other
mechanism. As the objective J can not always be observed by the 7a, it needs to design
its reward structure so that its return can act as a proxy for J.

The ta has a stochastic policy 7(a|s) or a deterministic policy 7(s). Based on the state and
this policy, the ta sets the toll price or toll price adjustment on one or more links. In case of
more than one ta the problem needs to be generalized to a Markov Game (Sect. A.3) and,
when other elements of the environment (vehicles, traffic signals) become learning agents,
as well.

5.2 Research challenges
Common challenges in (Multi Agent) Reinforcement Learning as surveyed in (Albrecht
et al. 2024; Du and Ding 2021; Dulac-Arnold et al. 2021; Gronauer and Diepold 2022; Pat-

terson et al. 2024; Wong et al. 2022; Yuan et al. 2023) are outlined below with a specific
focus on the implications for the road pricing problem.
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Partial Observability: Partial Observability (Sect. A.1), can occur if a toll agent has only
information on the links for which it needs to provide the toll prices but not on all links of
the network. It may also be that state information is distorted because of sensor failures, or
simply because information is not available to the toll agent.

Credit Assignment: Credit Assignment (Sect. A.2) in road pricing may be challenging
due to spatio-temporal dependencies in the environment and actions of toll agents. Depend-
ing on the route and departure time model of vehicles and the resulting traffic dynamics,
it can be difficult to specifically identify which action contributed to which (part of the)
reward. Note that credit assignment in single agent settings is already challenging due to
spatio-temporal dependencies; this is compounded in situations where multiple agents act
simultaneously.

Non-stationarity: Non-stationarity (Sect. A.3) may occur if multiple toll agents are learn-
ing and updating their policies simultaneously. When the state of the environment is depen-
dent on the joint actions (toll prices) of all toll agents, the toll agents need to adapt to these
new policies, which violates the MDP assumption and convergence may no longer be guar-
anteed (Wong et al. 2022).

Scalability: When the problem is extended from a single agent to a multi agent setting
this is accompanied by an expansion of the state and action dimension, which may lead
to an exponential rise in the joint action dimension (Du and Ding 2021; Yuan et al. 2023).
Solutions with more agents may also increase the credit-assignment and non-stationarity
challenges (Albrecht et al. 2024).

Generalizability: This challenge addresses whether trained toll agents can perform well
in new and unseen situations. In the road pricing problem, this would encompass among
other different traffic demand patterns, changes in network topology and disturbances in
data provided (for example inaccurate measurements, sensor noise, missing data).

In addition to the challenges outlined above, the definition of the state, action and the
identification of a reward function is part of the research in road pricing problems as well.
This contrasts to benchmark problems (Bettini et al. 2024; Bellemare et al. 2013; Sutton and
Barto 2018; Todorov et al. 2012) where these are explicitly defined.

The surveyed works in the next Section (Sect. 6) detail how these challenges are
addressed in the road pricing problem and are summarized in Sect. 7.

6 Road pricing approaches using reinforcement learning

In this section a detailed analysis is provided of the ways in which the problem and chal-
lenges, formulated in Sect. 5 has been addressed. The works are clustered in sub-sections by
problem domain and RL solution approach. A conscious attempt has been made to align the
notation between the various works and the notation introduced in Sect. 2 and Section A.
The traffic model (Sect. 2) is the basis for describing the most relevant characteristics, spe-
cific for the works. The description of the toll mechanism and application of RL builds on
the background information (Sects. 3 and A). Additional detail is provided where necessary.
The most important characteristics of the works are listed in Table 3.

We emphasize that in the models we both have episode steps t € 0,1,..., H and time
steps t € 0,1, ...,T where there are I' time steps in an episode step. This implies that if a
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vehicle uses the toll price of a link (737 (£)) it uses the toll price set by the agent at the latest
episode step ¢ prior to ¢. Time can be indicated both by 7 and £.

6.1 Policy gradient for enhanced A-Tolling in Road Networks
6.1.1 Enhanced A-Tolling with Finite Difference Policy Gradient

A (Delta)-tolling (Sharon et al. 2016, 2017)(Sharon et al. 2017) dynamically tolls all
links in a network optimizing Social Welfare using fixed parameters. In Enhanced A-toll-
ing (Mirzaei et al. 2018, 2018) (E'A-tolling) the objective is to optimize Social Welfare (See
Table 2) by optimizing the parameters of A-tolling. They therefore make the strong assump-
tion that for each vehicle the vot is known. This is achieved by using a Finite Difference
Policy Gradient Reinforcement Learning (FD PGRL) (Kohl and Stone 2004) algorithm to
learn the parameters that determine the toll.

Traffic model set-up: Given (G, V, D): (¢, ) For each link in a network the toll is calcu-
lated in two steps: first, A is calculated every time step ¢ based on the difference between the
travel time on a link ¢¢(1,¢) and the free flow travel time 7(/) on the same link:

At) =t t) = T(0). ®)

After that, A is multiplied by a proportionality factor 3 so the product is proportional to the
difference between travel time and free flow travel time. Then this and the previous toll 7
are smoothed with a weighting factor R:

T(l,t+1) = R(BA(L)) + (1 — R)7(l,1). ©)

The calculated toll is then set to the link in real time. The corresponding cost function is:

c(l,t) = tt(l,t) xvot + 7(1, ). (10)

(R) Route choice: A vehicle optimizes its route dynamically at every node for minimal
cost, based on actual travel times and actual tolls. (M) Network loading is done using the
CTM.

RL set-up: In a FD PGRL algorithm the parameters @ of the policy 7 are optimized
with gradients as usual. The negative total cost (10) in an episode, exclusive of toll
co(l,t) = tt(l, t) * vot, is used as the reward signal. However, these gradients are calcu-
lated after performing an episode with a number of policies with slightly perturbed param-
eters (Peters et al. 2006) which lead to different performance. Using the differences in the
parameters and the differences in performance, the gradients are estimated. Here, 5 and R
are optimized by a FD PGRL-algorithm. The specific version used here (Kohl and Stone
2004) updates the policy parameters with an adjustment vector. The variants in this work
consist of different Local/Global combinations of 5 and R in the network. Local means
every link has its own parameter and Global means all links have the same parameter. Vari-
ants are: Global R, Local 8 (E2A-tollingg), Local R, Global 3 (E'A-tolling), and Local R,
Local 8 (EA-tollingg g).
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Results: Experiments are conducted on various networks. All variants show improve-
ments up to 45% over no tolls. £A-tollingg underperforms the other variants and performs
only slightly better than regular A-tolling. Another drawback is that EA-tolling is limited
in its convergence rate; it is optimized for a specific traffic pattern and might be too slow to
learn a new traffic pattern.

6.2 Actor-critic dynamic toll collection for road networks
6.2.1 Dynamic electronic toll collection - PG-/3

A Dynamic Electronic Toll Collection (DyETC) system in a network, consisting of tolled
and non-tolled links, uses Policy Gradient with actor-critic (Chen et al. 2018). The objective
is to optimize traffic flow by dynamically adjusting tolls. The policy is approximated by a
parameterized function and optimized by a modified Policy Gradient (PG)-algorithm.

Traffic model set-up: Given (G, V, D): (c,) Link costs are based on travel time on a link
and toll. The travel time is calculated with a LPF. The toll 7(l, £) in this case is equal to the
action Al:

c(l,t) = tt(l,t) xvot + 7(1, ). (11)

Route costs consist of the sum of its link costs. (R) Route choice of vehicles is based on a
Stochastic User Equilibrium and route choice for vehicles is updated every time step. (M)
Network loading is done using a modification of a macroscopic static model.

RL set-up: A new algorithm, Policy Gradient-3 (PG-3) with a separate critic is proposed,
with a continuous action space. This improves traditional PG algorithms by using: a) time-
dependent value and policy functions, b) use of the S-distribution as an alternative to the
normal distribution to obtain a bounded action space, and c) state abstraction: an assumption
that vehicles on the same link have almost equal effects on tolls. The problem is formulated
as a time-dependent Markov Decision Process on the traffic network, with time horizon H,
and discrete episode steps t = 0,1, ..., H. maintaining time-dependent value and policy
functions. State is defined as Sﬁf , the number of vehicles on link / with destination node fat
time ¢. The state vector of a link as ng and state matrix of the network G as S;. An action A;
is defined as the toll vector which consists of the tolls A} applied to link /. Once an action is
applied at time ¢, the number of vehicles on each link is updated:

Syt =81 — sifeut 4 gihin, (12)

The immediate reward function R;(S;) is defined as the number of vehicles that arrived at
their destination during episode step z. Time-dependent policy and value functions imply
that there is a set of policies and a set of value functions; for each episode step ¢ a policy and
value function. The value function at episode step ¢ is defined as:

ve(S) = Y 7" 'Ry (Sw). (13)
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The optimal policy for the toll agent at episode step ¢ is:

Tat(Ae|St) = argn}Taxvt(St). (14)

A policy function approximator parameterized by 6y, 7:(A¢|S¢, ) and a value function
approximator parameterized by ¥, 0:(S:|J:) are used in an actor-critic algorithm to train
the policies. Different from the regular actor-critic is that each episode step has its own
policy and value function for which the parameters are learned. Secondly, where usually in
PG algorithms a Normal probability density function (pdf) is used for MDPs with continu-
ous action spaces, here they use a 5-pdf to adapt to a bounded action space.

Results: Experiments are on a synthetic traffic network and a real network. PG-£ outper-
forms algorithms where the episode step is incorporated in the state or not considered at all.
A similar algorithm using the Normal distribution does not learn an effective policy. Using
PG-/3 with state abstraction is 75% more efficient than without. PG-{3-abs is then compared
in five scenarios with four other tolling mechanisms: Fixed toll: proportional to average
demand, DyState: dynamic toll proportional to state, A-tolling (see Sect. 6.1.1) and no toll.
In all scenarios PG-$3-abs outperforms the other tolling schemes. In a second experiment
on a real network, PG-3-abs outperforms all other mechanisms, and compared to the Fixed
tolling scheme, which was second best, the realized flow was 8% higher and TSTT 14.6%
lower. Scalability to larger networks is identified in the work as a challenge.

6.2.2 Dynamic electronic toll collection - MARL

An extension of DyETC (Chen et al. 2018) (Sect. 6.2.1) with MARL, to enable larger net-
works and overcome the scalability problems, led to DyETC-MARL using edge-based
Graph Convolutional Networks (GCN) (Qiu et al. 2019). The work proposes the use of an
edge-based GCN to extract spatio-temporal correlations of the network status and to apply
cooperative MARL where each toll agent serves a part of the network. The objective of the
toll agents is to maximize the total number of vehicles arriving at their destination. This
means that each agent gets the same reward. The agents share a common value network.

Traffic model set-up: Similar to Sect. 6.2.1. In addition, the network G is split in parti-
tions, that each cover one or more links.

RL set-up: The RL problem is formulated as in Sect. 6.2.1. The optimal policy for each
agentta’,i € 1,..., N covers its (ta’) partition of the network. The agents adapt the CTDE
framework using an actor-critic method for learning. Figure 6 presents the high-level archi-
tecture of the proposed system. Each ta learns its own policy (actor), and together they
use the same value network (critic). By sharing the critic and getting the same rewards,
the agents have a common goal; this implies a natural way of cooperating between them.
Because of the finite horizon of the MDP, the parameters of the actor and critic are time-
dependent. The captured state information is preprocessed using a GCN (Kipf and Welling
2017). With a GCN the graph nature of G is combined with the state information of each
link to generate a richer input to each agent. The GCN’s output p;, is specific for each ta,
using information from the partition of that toll agent. So agent ta’ obtains p; and generates
the action for every link in its partition.

Results:  Experiments are conducted on two real networks. MARL-eGCN, DPG-5
-eGCN (not using the multi-agent approach but PG-5 with a neural network) and PG-3
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are compared with each other on both networks. MARL-eGCN and DPG-$-eGCN, signifi-
cantly outperform PG-0. In addition MARL-eGCN and DPG-3-eGCN converge both faster
than PG-£.

In the next set of experiments, various ablation studies and robustness tests were con-
ducted, among other different traffic settings and different pricing schemes. An important
finding in this work is that performance decreases when more than 8 agents are used, and
best performance is achieved with 6 agents. The use of more agents suffers from feature
redundancy and more coordination costs. Fewer agents (than 6) cannot leverage the power
of multi-agent learning (Qiu et al. 2019).

The solution demonstrates that decomposing the state and action spaces per agent and
cooperation between agents helps solve the DyETC problem. Preprocessing state with a
GCN exploits correlations between the links in the network.

6.2.3 Dynamic and deadline oriented road pricing mechanism

DADO, considering vehicles’ time requirements takes deadlines into account (Jin et al.
2021). For vehicles with a deadline, route cost is appreciated differently if the time interval
x between the calculated arrival time and the deadline is below or above a threshold value
D. The objective for the agents is to optimize the number of vehicles arriving prior to their
deadline, using different reward functions.

Traffic model set-up: Given (G, V, D): (¢,) For vehicles with z > D remaining time is
abundant and their cost is based on road tolls and the remaining time, increasing slowly if
x decreases. If x < D the time cost will increase dramatically. For vehicles without a dead-
line the regular way of calculating the cost per link is used (Equation (11)). Each vehicle
is provided with a deadline and updates its route at every junction based on Stochastic
User Equilibrium. (R) and (M) network loading are similar to the DyETC model (Section
(6.2.1)) The objective of toll agents is to maximize the number of vehicles that arrive at the
destination before the deadline.

RL set-up: State is defined as Sif ¢ where the deadline d is an additional index to the
state defined in DyETC; for vehicles with no deadline, d = 0. The index d is also used in
calculating the fraction of traffic flow in the Stochastic User Equilibrium calculation, as well
as in the state transition calculation. Actions (tolls) are as defined in DyETC. Three differ-
ent reward functions R are defined: R1 to maximize the number of vehicles arriving at their
destination before the deadline, R2 to minimize the number of vehicles arriving after the
deadline and R3 to minimize the time gap between time of arrival if beyond the deadline and
the deadline. The value function is defined as:

Z 7 e (Se). (15)

t'=t

The policy is as in DyETC time-dependent: 7 (A¢|S¢, 8). The optimal policy by training the
agent maximizes the value function, which is determined by the critic, parameterized by 1,
v(St,¥). The multi-agent actor-critic algorithm, using the CTDE concept (Fig. 7), is based
on three key components: a) The local agents for each tolled link determine the toll prices by
the local actor and collect the rewards; b) After completing an episode, the local agent deter-
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mines the accumulated gradients for the local actor (8) and critic (19); and c) A global actor-
critic is updated asynchronously by the accumulated gradients of the local agents, whose
parameters are pulled by the local agents after all updates by local agents are complete.

Results: Experiments are performed on a real network. The results are compared with:
a) fixed tolling (fee proportional to average demand); b) A-tolling (Sharon et al. 2017)
(Sect. 6.1.1) and c) DyETC (Chen et al. 2018) (Sect. 6.2.1). When evaluated against the
objective of the reward functions R1, R2 and R3, DADO outperforms the other tolling
mechanisms. When evaluated without taking account of deadlines, DADO slightly under-
performs DyETC. When reward function R1 is used and, respectively the initial state on
the links, initial demand, cost sensitivity and maximum toll price are varied, DADO and
DyETC outperform fixed tolling and A-tolling and DADO is still optimal. Fixed tolling and
A-tolling have problems with performance under changing traffic conditions.

6.2.4 Toll pricing with attention network and soft actor-critic

Another variation (Cooperative Tolling with Reinforcement Learning, CTRL) uses an atten-
tion mechanism and SAC (Sect. A.5.2) to determine toll prices for routes (Wang et al. 2022).
Attention (Vaswani et al. 2017) allows modeling of dependencies without regard to their
distance in input or output sequences, in this case the information contained in the route
between upstream and downstream links. The quality score of a route (Q-value) is also
derived using an attention network. This aims to produce comparable tolls for routes taking
both state and action (of other routes) into account.

Traffic model set-up: Given (G, ¥V, D): (¢,) The price (toll) of a route is determined by
the toll agent. (R) Route choice: For every OD pair three routes are predefined and route
choice by vehicles is performed at the start of their route based on lowest toll. Vehicles can
not change their route after departure. (M) Network loading is done with a microscopic
simulation model. The objective of the toll agent is to minimize the Average System Travel
Time for all vehicles that arrive at their destinations.

RL set-up: First the delays are calculated. Delays are defined as a scaled difference
between actual travel time and free flow travel time on all links, denoted as d}. State S; for
route p°~*¢ is defined as the output of the attention mechanism denoted by Agg and based
on the concatenated delays of the links comprising that route:

o—d

SP = Agg(d)), L€ p°? (16)

The action AY o is the route price. Reward per link is defined as the cumulative distance
covered by vehicles on a link during a time step. Reward per route is defined as the average
reward of all links per route. SAC (Haarnoja et al. 2018) is the algorithm to train the agent
determining the route prices. In this set-up the actor network calculates the action (toll price)
for each path of an OD-pair. The Q values for each state action pair are calculated by the
critic network. Part of this critic network is an attention mechanism to ensure that Q-values
are not only based on the state/action per route but also that other routes are taken into
account. The parameters of the critic network are updated, after which the policy is updated.

Results: In experiments the set-up is tested on three real networks. Experiments are con-
ducted to compare with other tolling mechanisms: a) No Change: no toll; b) Random: ran-
dom route choice by vehicles; ¢) Formula: formula based toll price depending on vehicles on
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link; d) A-tolling: A-tolling (Sharon et al. 2017) (see: 6.1.1); e) Indi-SAC: Soft-Actor-Critic
per link; f) Share-SAC: shared Soft-Actor-Critic; and g) MARL-eGCN: MARL-eGCN with
one partition (Qiu et al. 2019) (see: 6.2.2 hereafter). The comparison is on throughput,
Average System Travel Time and return. Its best result is a reduction of 44% in Average
System Travel Time of vehicles that arrived at their destination. Overall CTRL outperforms
the other toll mechanisms. In only one network A-tolling shows comparable results. An
ablation study shows that the Q-attention mechanism provides better tolls (defined as differ-
entiated for all three routes and fair) and State-attention increases throughput and decreases
Average System Travel Time. Overall CTRL increases throughput and decreases Average
System Travel Time.

6.2.5 Dynamic toll collection using transformers and graph neural networks

Further building on the ideas described in Sects. 6.2.2 and 6.2.4 leads to a model (Lu et al.
2024) where a Multi Agent Transformer (Wen et al. 2022) architecture is combined with
Random Walk Positional Encoding (RWPE) (Dwivedi et al. 2022) with a GCN for structural
Position Encoding (PE) (Ye et al. 2023). The objective of the ta’s is to reduce the TSTT. For
a high-level architecture, see Fig. 8.

Traffic model set up: (R) Before departure, vehicles select the lowest cost route, which
they do not update after departure. A number of links in the network is tolled. In the graph
for the GCN, the links are modeled as vertices, and the junctions as edges. (M) For network
loading a microscopic model is used (Zhang et al. 2019).

RL setup: State is defined as the number of vehicles that entered the link since the previ-
ous episode step combined with the current number of vehicles on the link. The action is a
selection of one of five toll rates per link. Reward is given by the negative average queue
length of vehicles on the link during the decision interval, started with A; (1) which consists
of I time steps:

Ripa(l) = —

M=

r
> ail). a7
=1

The approach in this model is to first pre-calculate the PE for the vertices. When taking
an episode step, the observations per vertex are concatenated with the PE and fed into the
GCN. The output of the GCN is input for the Multi Agent Transformer, which expresses the
sequential decision process for each agent (gives the tolls for each link) using the Multi-
Agent Advantage Decomposition theorem (Wen et al. 2022).

Results: The model is tested on two city networks using a microscopic traffic model
(Zhang et al. 2019). The experiment encompassed three traffic scenarios simulating low,
medium and high vehicle demand. The MAGT solution was compared with a MAT solu-
tion (without PE/GCN), no toll, adaptive toll (based on A-tolling (Sharon et al. 2016)) and
EGCN toll (Qiu et al. 2019). The MAGT toll solution outperforms all other mechanisms
except in a low demand scenario, where EGCN and MAGT perform almost equally. Its best
result was a reduction of 18% in Average System Travel Time. The performance is attrib-
uted to the combination of positional encoding and the Multi Agent Transformer.
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6.2.6 Dynamic toll pricing in regions

An agent is trained to set tolls for a region-based approach (He et al. 2024) using a similar
type of day-to-day and intraday dynamics as in Sect. 6.5.1. The ta has the objective of mini-
mizing the Total System Travel Time. The performance is also evaluated on speed profiles
and total system cost.

Traffic model set up: Given (G, ¥V, D): G is divided in a number of regions. The traffic
characteristics in the regions are based on a (Macroscopic) Fundamental Diagram (2.5).
These characteristics are determined by a trained neural network. Vehicles travel from one
region to another region. (c,) Vehicles take an experienced cost on (day, time) = (j — 1,
t) and the predicted cost (7, 1) based on actual travel times and tolls. Their perceived cost
(7, 1), is a convex combination of experienced and predicted cost. (R) The perceived cost is
input to a softmax function to provide the route choice probability. (M) Network loading is
performed using a macroscopic model.

RL model set up: A2C (Sect. A.5) is used to determine the tolls. State is defined as:

St = Kni(t)aTi(t)vtv Z)|Z € I]v (18)

where n,(t) indicates the number of vehicles in i at time ¢, and Z is the number of regions.
The action A; € [Timin, Tmaz) is the adjusted toll price, modeled as a continuous variable.
The reward is defined as the negative sum of all vehicles in the region in the toll adjustment
interval.

Results: The a is able to improve the speed profile and decrease both Total System Cost
and Total System Travel Time with a reduction of 6% as its best result. The model also
reaches an equilibrium state. When the system is tested to robustness against input vari-
ability, the agent reaches an improved equilibrium state comparable to the non-varied input.
The model is further tested with different lengths of I'. For I there is a level (15 minutes)
that provides a good balance between accuracy and feasibility with values above (30, 60
minutes) and below (5 minutes) with lower performance.

6.3 Value based dynamic toll collection for tolled lanes
6.3.1 Distance based tolling with R-MART

In (Zhu and Ukkusuri 2015) a traffic network is considered in which some links have both
anon-tolled lane and a tolled lane. The objective is to dynamically determine the toll prices
for the tolled lanes so that the Total System Travel Time on these links is minimized. Tabular
Q-learning is used to find the optimal policy. One agent operates on each link with a tolled
lane, which optimizes the performance only for that link, without cooperation or communi-
cation with other agents (DTDE).

Traffic model set-up: Given (G, V, D): (G). The links / are divided in N(/) cells of equal
length. The lanes of a link are further indexed by i and, if tolled, by 4’ like I; and l;/. (c,)
Tolls are calculated based on the remaining distance from cell m to the exit of the tolled lane
and actual toll rate 0., e € 1,2, 3, 4. The remaining distance is determined as the number of
cells until the exit of the lane (N ({;;) — m) multiplied by cell length C.
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T(lir,m,0e,t) = (N(l7) = m) * C x 0, (19)

The cost for a vehicle on the tolled lane, adding remaining travel time to the end of the lane,
therefore is:

co(lir,m,t) = tt(lyr,m,t) + (N () —m) * C * 0. (20)

And for a non-tolled lane:

co(lsy,m,t) = tt(l;,m,t). 21

A vehicle determines the cost of using the non-tolled lane (based on remaining travel time to
the end of the lane) and the tolled lane (based on the remaining travel time to the end of the
lane and tolls). (R) Vehicles choose to either stay on a non-tolled lane, or change to a tolled
lane. Route choice is implemented using a binomial logit model with lane cost as input.
Tolled lanes can be entered at any position on the non-tolled lane; vice versa is not allowed.
(M) Network loading is done using the CTM.

RL set-up: The environment is modeled as a MDP. The state S at lane [; at time ¢ is
denoted as Sff' and the next state as S’i”, and similar for I;,. The states in lane [; are dis-
cretized and based on the comparison between the density & at time ¢ denoted as k(l;, t) and
the jam density k;;, as below:

1, if k(li,t) < 0.25k;,,
L) 2, elseif k(l;,t) <0.50k;,,
Si'=9 3. elseif k(i) < 0.75k,,. 22)
4, else if k(lz, t) S iji

and similar for lane /;/. The state on the link, comprising both the tolled and non-tolled
lanes, is denoted S,{. The actions «a in lane /;; depend on the cell m and time ¢ denoted as

Ai“ (m). Action selection is e-greedy on the maximum Q-values. The toll rates correspond-
ing to these actions are o if Ai“ (m)="5 (b€ l...4) with o, the threshold values of the

toll rate. Reward RY'(S!, A% (m), S!) is calculated based on total travel time on a link sum-
ming the travel times #¢ at lanes [; and [;; from cell m for all vehicles x(/, m, f) to the exit of
the lane at time ¢ for all lanes and all cells:

Ry (SLAY (m),S)) = = Y ) tt(j,m. ) x x(j.m. 1), (23)

jelilyy m

A R-Markov Average Reward Technique (R-MART (Sutton and Barto 2018)) is used which
applies to continuing problems. In continuing problems, the interaction between agent and
environment goes on and on forever. The quality of a policy is defined as the average rate of
reward p. The Q-values for toll lane i for all cells m on a link / are updated as:

QUSE A (m) < Q(Sk AL (m) +a [RiY () — p + max Q(Sta) - QS}, Ay (m)] - (24)
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Results: In an experiment, the Total System Travel Time on the links with both a non-
tolled and tolled lane decreases with 25% on a real network. Varying the number of states
and actions demonstrates that increasing the number of states and/or actions does not lead
per sé€ to an improvement in travel time; there is even a trend that the algorithm worsens
when the number of states and actions are growing. In the work they highlight finding the
best combination of states and actions as a problem for further study.

6.3.2 MARL for distributed dynamic pricing of managed lanes

A distributed Multi Agent model is used to manage dynamic pricing for managed lanes
with multiple entrances and exits (Pandey and Boyles 2018). To this effect, the sum of
each agents’ local value is used as an approximation for the total state value. Furthermore,
in determining the action (toll price) the agents collaborate by taking the actions of down-
stream agents into account. Therefore we categorize the training model as CTDE. The
objective of the toll agents is to maximize revenue.

Traffic model set-up: Given (G, V, D): (G) Managed lane networks are considered, con-
sisting of one general-purpose lane and one tolled lane, with one or more entries and one or
more exits. (D) vehicles are categorized in different classes according to a set of different
vot. (R) vehicles choose according to minimal cost of the available routes. (M) Network
loading is done using CTM.

RL set-up: State S; is defined as the vector that contains the number of vehicles of each
vot class per cell. Action A, is the action vector with the actions of all agents (toll prices).
Reward R:(S¢, A;) is the product of the number of vehicles choosing the managed lane
times the (toll rate/mile) times the length of of the managed lane. A penalty is applied if the
managed lane becomes congested. Because the assumption is that toll agents collaborate
and need to coordinate their actions with only a few neighboring agents, the MDP is relaxed.
This is done by approximating the value of the state as the sum of the individual value func-
tions of the agents’ state:

JACHE PRI CHE (25)

neN

For each toll agent the Bellman equation (A8) at optimality is:

where also the reward is decomposed into the rewards for each agent. To solve this relaxed
MDP some modifications are applied to Q-learning. The first modification is that the actions
of downstream agents are taken into account in action selection. The second modification is
that the value function is used based on cooperative Q-learning (Kok and Vlassis 2006) as
opposed to the action-value (Q) function. The resulting algorithm is called SparseV.
Results: SparseV is compared with three other algorithms using heuristics: a) Density: if
the density downstream in the managed lane differs from the required density, toll price is
adjusted up or down; b) Ratio: the ratio, between the density in the cells downstream in the
managed lane and the density in the cells in the general-purpose lane, determines adjustment
of the toll price, and ¢) Random: a number of policies with random action is simulated, the
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best performing random policy is chosen. Experiments are performed on a synthetic and
real network.

SparseVs outperforms the Density and Ratio heuristic which produce a revenue that is
70-75% lower. The Random policy outperforms SparseV by approximately 9 % in the first
network and is outperformed by approximately 24 % in the other network. The better per-
formance of the SparseV and Random policies is explained by the ’jam-and-harvest’ nature
of these policies; by setting initial tolls such that the General Purpose Lane becomes con-
gested and subsequently charging higher tolls when demand increases. The work highlights
convergence to sub-optimal values, attributed to exploration in relation to the aggregation
level of the state space and the jam-and-harvest nature, unwanted in practice, as weaknesses.

6.4 Actor-critic dynamic toll collection for tolled lanes
6.4.1 Deep RL for dynamic pricing of express lanes

Deep RL methods are tested in a wide range of use cases (access locations, OD-pairs, VOT
heterogeneity, partial observability) where links have both a toll lane and a General Purpose
Lane (GPL) (Pandey et al. 2020). A2C, PPO and SAC (Section A) are compared against a
feedback control heuristic. The agents are trained for two different objectives (not in the
same experiment): Maximum Revenue and minimum Total System Travel Time.

Traffic model set-up: Given (G, ¥, D): (G). All links are denoted as [ € L, links which
are tolled are denoted as I’ € L. (¢,) Toll lanes have multiple entrances and exits, where
tolls are charged. (D). Vehicles are divided in different classes based on their vot and on
their destination. (R) Lane choice: Two models for lane choice are used, a multi-class
binary logit model (two routes, stochastic choice, multiple vof) if there are only two routes,
and a multi-class decision route model (multiple routes, deterministic choice, multiple vor)
if more routes are available. (M) Network loading is done using CTM.

RL set-up: As the state is not fully observable the problem is defined as a POMDP for
which the policy m(alo(s)) is learned. The work uses a finite horizon H and incorporates
time (the toll update step number) in state observations. This is because of the temporal
dependence of the congestion pattern. The observation vector o(s), in which they also
model noise, for state s comprises the number of vehicles on each link, using 1;(v) = 1if v
is on link / and 0 if not:

ofs) = {Z 1,(d)|l € L}. 27)

The action a in state s is the vector of tolls 7(I) which are being applied on the tolled links
I'. Tolls are modeled as a continuous variable. Two types of reward are analysed: rewards
based on revenue maximization Rsg(s,a) which is the sum of the product of toll rate and
vehicles entering a toll lane during a toll update time period. In the other type rewards are
based on travel time minimization Rrsrr (s, a) which counts the number of vehicles every
toll update time step. The algorithms to find the policy are A2C, PPO and SAC.

Results: A series of experiments is conducted on synthetic and real networks, for various
objectives, variations of the observation space and variations on demand, route choice and
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vot. All three algorithms with a single objective converge for all networks. SAC outper-
forms PPO and A2C, which is attributed to the entropy regularization used by SAC. In an
experiment on the real network it appears that reducing the observation space of the network
(reducing 15 links to 4 links to 1 link under observation) does not reduce the convergence
speed. As this was an unexpected result it was speculated that this happens due to spatial
correlation of congestion patterns on a corridor. When conducting experiments on the same
network, with changed demand and vot to test generalization and transferability, the key
observations are that a) the algorithms learn from the new input situation at equal speed as
the original situation, and b) that the transferred policies from earlier experiments (PPO,
A2C), perform within a bandwidth of 5 - 12% of the newly trained policies in their experi-
ments. This is not the case if the lane choice model is changed; in that case the transferred
policy performs badly, attributed to the fact that the lane choice model has a large impact on
the evolution of congestion. Comparison with an industry-based heuristic shows that for all
networks for both objectives, DRL outperforms this heuristic.

6.4.2 A priori link selection and dynamic tolling of expressways

In case of a high-speed road network, where each link is tolled, the distance difference
between routes can be very large, and route adjustment is relatively difficult. Building on the
work in Sect. 6.4.1 another model is designed (Zhang et al. 2023) in which vehicles weigh
distance, travel time and cost and apply multi-objective optimization. Each ta is responsible
for one toll lane.

In experiments, the model demonstrates its effectiveness. However they note that it does
not take account of temporal correlation of traffic flow between different road sections in
the network.

6.5 Dynamic tolling to manage departure time choice
6.5.1 Dynamic congestion pricing for departure time choice

Another model is proposed for dynamic toll pricing for departure time choice (Sato et al.
2021). The objective is to minimize the total delay by influencing the departure time of
the vehicles. Q-learning is applied to learn the optimal policy, using a Q-value function
approximator.

Traffic model set-up: Given (G, ¥, D): (G). All links in the network have one bottleneck.
(¢y) The cost of a link with a bottleneck is based on the day j, the time ¢, the delay w, the
required arrival time t*, a vehicle’s vot, toll and a penalty for arriving early or late at the
destination.

ol 4,t) = 7(1, 4, 1) + vot x w(l, j, 1) + { AlEr — DL <L), ©8)

~(t — t*)(otherwise).

In this equation, 3 is the early arrival penalty factor and ~ the late arrival penalty factor
(see Sect. 3). Tolls (I, j,t) consist of a stabilization toll 7°(l, j, ), a parameterized func-
tion based on departure rate (Seo 2020), and a congestion toll 7¢(I, 7, t) based on the action
of the policy. (R) The model studies the morning commute. The day-to-day dynamics for
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departure flow in the morning commute are modeled using replicator dynamics (Schuster
and Sigmund 1983). This mechanism gives for every OD-pair the time ¢ and day j depen-
dent departure rate ¢(p, j, t) for all paths p € p°~9. All paths p°~*¢ going through link / are
denoted by P?~?. The departure rates per route per OD pair at time ¢ are given by a logit
model. Both have travel cost per route per departure time as input. The departure time of the
vehicle is therefore not fixed. (M) Network loading is performed with an extension of the
bottleneck model. The bottleneck model can be seen as a special case of the LWR model
(Sect. 2). In a bottleneck model (Arnott et al. 1990; Seo 2020; Vickrey 1969) the bottleneck
has a fixed capacity (service rate) and if the arrival rate exceeds this capacity, a queue begins
to form. In the model used here, the queue occupies no space.

A vehicle arrives at the bottleneck of a link after the free flow travel time from the begin
of the link to the bottleneck of the link, and departs the link immediately after leaving the
bottleneck. The time spent at the bottleneck is the waiting time w (also: delay).

RL set-up: Q-learning is used to determine the congestion tolls. The effect of tolls on
departure time should lead to a reduction in waiting time at the bottleneck. A spatially
shared reward structure is to take account of tolls on other links. State S is a vector of the
departure rate from an origin in an OD-pair, waiting time at the bottleneck and the stabilisa-
tion toll (T for transposed):

T
si=[ Y. <w.w, 0] (29)
plePL{)Hd
Action Al is the update to the congestion toll, therefore:
(Lt +1) = 7¢(1,t) + AL (30)

Reward R is the weighted sum (by a factor K) of the inverse difference between the bottle-
neck capacity and traffic flow at the bottleneck in link / lower bounded by a constant E
(denoted €} and the bottleneck capacity and traffic flow for all other links I’ with bottle-
necks collectively also lower bounded by a constant £ (denoted by fél):

Rl = () + K& 31)

More reward is given if departure rates are close to bottleneck capacity and it takes account
of this for the other bottlenecks. This mechanism implements the spatially shared reward
structure. The policy finds the adjustment tolls (the actions), by choosing actions e-greedy,
leading to minimal total waiting time. The parameter updates are learned by Q-value func-
tion approximation for which Radial Basis Functions are used (Sutton and Barto 2018).

Results: Experiments are performed on two synthetic networks: one where they apply
the method to a single link single bottleneck model, the other with a single OD-pair and
three links with three bottlenecks. After training, the agent succeeds in reducing the waiting
time to almost zero and outperforms a trial and error congestion pricing scheme (Seo 2020).
Performance in the three bottleneck model was inefficient compared to the single bottleneck
model. This is attributed to the reward function in the sense that the spatially shared reward
function did not provide sufficient coordination between the bottlenecks.
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6.5.2 Pricing for departure time choice with DDPG

Extending Sato et al. (2021) outlined in the departure choice model above (Sect. 6.5.1) with
DRL, and temporally switching learning leads to Distributed Pricing-Deep Deterministic
Policy Gradient (DP-DDPG) (Sato et al. 2022). DDPG (Lillicrap et al. 2015), (Section A),
is used as RL mechanism. A modification is that an action is fixed at zero if the moving aver-
age of the waiting time is less then a threshold (temporally switching learning). This leads
to more efficiency and less excessive increases in tolls. Distributed control, using spatially
shared rewards (Sect. 6.5.1), is implemented to enable cooperation.

Traffic model set-up: Given (G, ¥, D): (G) and (c,) are as per (Sato et al. 2021) detailed
above (Sect. 6.5.1). (R) Different from (Sect. 6.5.1), the departure time and route choice are
based on a multinomial logit model. Furthermore, vehicles have bounded rationality, mean-
ing that departure time and route will not be changed if the difference between expected cost
of current choices compared with the expected costs of alternatives remain below a certain
threshold. (M) For network loading the bottleneck model is used. The objective of the toll
agents is to reduce delay on the link under its responsibility.

RL set-up: State is defined in a similar way as above (Sect. 6.5.1), adapted for input to a
neural network. Action is an adjustment to the toll price for a bottleneck. Action A! is the
update to the congestion toll:

(L, j,t) = 7(1,j,t) + A} 32)

The spatially shared reward R is a weighted average of the waiting time at bottleneck i of
agent ta’ and the bottlenecks of the other agents ta~, slightly modified from (Sato et al.
2021) above. With this reward, each agent ta® takes into account the rewards of the other
agents ta~* and therefore their objectives are aligned. Each agent ta’ uses its own instance
of the DDPG algorithm to observe state, leading to an action and obtaining a reward and
observation of the next state. This data (S!, AL, R}, S! 41) for each agent is stored in an expe-
rience replay memory, from which data is sampled to update the actor and critic networks
of the agents. If the temporally switching learning criterion has been met, no action is taken
(so no toll updates) and no data is added to the experience replay buffer, so this data is not
used for learning.

Results: Two experiments are performed, one on a network with three links for one OD-
pair with a bottleneck on every link. Another experiment involved a real network to evaluate
the performance where multiple OD pairs and multiple routes exist. In the first experi-
ment, the deadline for all vehicles is the same and DP-DDPG is compared with centralized
DDPQG, fully distributed DDPG and Q-Learning (Sato et al. 2021). DP-DDPG outperforms
centralized DDPG and fully distributed DDPG as these could not decrease waiting time.
Q-Learning however succeeded in decreasing waiting time. In a simplified real network,
toll is charged on four links with a bottleneck and there are three links with a bottleneck
without charging tolls. The same arrival time is set for all vehicles. The results demonstrate
that the waiting time reduces, meaning that with a trained agent, the vehicles also adapt their
behavior leading to lower waiting times.

@ Springer



Reinforcement learning for road pricing: a review and future directions Page 31 0of 58 65

6.6 Value based dynamic tolling including vehicles as learning agents
6.6.1 Multi agent road pricing with learning vehicles and toll agents

A traffic network is modeled as a Multi Agent system with two types of agents (Tavares and
Bazzan 2014). For the demand side, vehicles that are traversing the network, with the objec-
tive to optimize route choice. For the supply side, toll agents that are setting tolls on links in
the network, with the objective to maximize flow. For both types of agents DTDE applies.

Traffic model set-up: Given (G, V, D): (¢,). Vehicles have knowledge of the network
based on experience, which means they only know the toll 7 and travel time # for a link if
they travelled it in the past and recorded it as (¢, v, [, t¢, 7) If vehicles have never used a link,
the travel time is based on the free flow travel time 7(/) and for the toll, the maximum toll
7/(1) divided by 2: 7 = 7'(I)/2. The cost for a vehicle is the sum of link costs. Link costs
¢ (1, tt, 7) are vehicle specific, and based on a weighting factor n(v) € [0, 1]:

co(lytt, ) = n(v) x tt(l,v) + (1 —n(v)) *7(l,v), (33)

where travel times and tolls are based on prior recorded experiences or alternatively the
default values. (R) Prior to each episode, vehicles calculate their optimal (lowest cost) route
based on calculated link costs and do not update their route while traversing the network.
(M) Network loading is done using a microscopic traffic model.

RL set-up: The toll agents are trained as independent learners to limit the problem size
(DTDE). The toll agents’ actions consist of setting a toll price 7 (1) as a fraction of the maxi-
mum toll price 7/(1) for a link. The model is stateless and only a reward R; is observed after
an action; the reward R; is the number of vehicles v; which have entered a link during the
episode. The action values Q(7 (1)) are stored in a Q-table and are learned according to:

Qi) + (1 —a)Qi(r(1)) + aRy. (34)

where « is the learning rate. The objective is to find the e-greedy policy which maximizes
the flow, where ¢ is decreasing over time. Vehicles initially only know the values of free
flow travel time for all links and maximum price for all links. Vehicles can update these val-
ues by acquiring local knowledge, that is when they travel a route learning the actual travel
times of the links and tolls they pay.

Results: Under different vehicle preference scenarios, the performance of the fa is com-
pared with a fixed toll scenario and a Dynamic User Equilibrium scenario which assumes
global knowledge for the vehicles. The DUE solution outperforms the MARL solution,
which again outperforms the fixed toll scenario. While the average performance of the ta’s
increases, large differences exist between best and worst performers. In summary, the case
where both vehicles and toll agents learn outperforms the fixed-toll solution in these experi-
ments. Global performance increased (more vehicles completed trips in the network) and
vehicle costs decreased. These outcomes were achieved without an explicit coordination
mechanism between the Toll Agents. With global information DUE led to better results.
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6.6.2 Deep multi agent road pricing with learning vehicles and toll agent

A variation on 6.6.1 uses DQN (Mnih et al. 2015) both for a ta and for vehicles making
their lane choice (Chakravarty et al. 2024). The objective of the fa is to maximize revenue,
generated by the tolled links (I") defined as rev(t) = ky/(t) - v (t) - 7+ (t), the product of
density, speed and toll price. The objective of the vehicles is to be in the fast lane, but taking
into account the toll price.

Traffic model set-up: Given (G, V, D): In the network are two parallel links, one tolled
(1), one non-tolled (/) where the difference in speed is noted as Av = v;r — v;. Shallow
neural networks are pre-trained using real-world data to relate observed density to speed
(f1(k) = u) and toll price and speed to provide the fraction £ choosing the tolled lane
(f2(7, k) = &) and the non-tolled lane (1 — &). (¢,) The vehicle cost function is not made
explicit. (R) Route choice is made by an agent using DQN. (M) We categorize this as a
macroscopic model.

RL Set up: The state for vehicles is defined as:

Sy = [7, Av,/Avdt], (35)

and the reward function, with ' = 0, 1 for being in the slower or faster lane as:

REZ —a172+a2F. (36)
Vehicle characteristics are modeled by a1, as to indicate how much they value speed over
toll price. The action a; consists of choosing the tolled or non-tolled lane.
For the toll agent state is defined as:

Sy = [UT,A%/Avdt>/€ina7‘ev(t)]> (7

with k;,, total incoming density. The action space is a set of toll prices. Finally, the fa reward
combines revenue and Awv:

Ry = by xrev(t)® — 2% B, (38)

where B =0if Av > 0and B = 1 else.

Results: The driver agent succeeded in improving its reward. Training the agent ceased
when the average reward was above a certain threshold for five episodes. Another outcome
was that vehicles were never willing to pay more than a certain toll price, although the speed
in the tolled lane was higher. The ta succeeded in increasing its reward as well. Training for
this agent was stopped if the average reward was above a certain threshold.

The authors note that both the za and the vehicle agent were able to improve their per-
formance. However they indicate the vehicle agent could be improved by a more complex
reward function and that their set-up of the environment showed some weaknesses in cal-
culating the density fraction.
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6.7 Value based marginal cost tolling
6.7.1 Multi agent reinforcement learning - only vehicles

In Ramos et al. (2018, 2020) vehicles are represented by a Q-learning agent whose objec-
tives are to find the routes with the optimal Q-value. The tolling scheme, based on Marginal
Cost Tolling (MCT), is distributed. The objective of the tolling scheme is to bring the User
Equilibrium closer to the System Optimum (Sect. 2).

Traffic model set-up: Given (G, V, D): (¢,). The toll on a link for a vehicle is the dif-
ference between the free flow travel time 7(/) and the actual driving time on the link #(/),
multiplied by a constant /5 which is specific for the Link Performance Function (Sect. 2).

(v, L tt(l,t), 1) = B(tt(l,t) — T(1). (39)

The cost for a link is the sum of the toll and actual driving time:

Cy (la tt(lvﬁ)al) = tt(laz) + T(U, la tt(lvﬁ)al) (40)

The self-calculated cost by the vehicles for a path p°~¢ is the sum of the cost of the links
I € p°~? and is denoted as ¢, (p°~?). (R) Vehicles know a subset of their routes a priori,
and the only action is to select the route every day, based on the Q-value of the routes in the
subset. (M) Network loading is done by a microscopic model.

RL set-up: This problem is modeled as a stateless MDP, as the vehicle takes an action
A, based on the highest Q-value of that action and then obtains a reward R(4) based on that
action. The reward R(4) is defined as:

R(A) = =, (p"7). (41
The vehicles want to take a route p°~¢ which minimizes their costs. Therefore, this entails
finding the policy m, which provides the route to take and maximises the agent’s aver-
age reward. The algorithm used is Q-learning (Watkins and Dayan 1992) with independent

Q-Learners (Claus and Boutilier 1998) thereby implementing a DTDE framework. The
Q-learning algorithm is modified to a stateless version:

Q(A) = (1 = @)Q(A) + aR(A). (42)

The learning rate « is exponentially decaying per episode. Every episode an agent takes an
action (chooses a route), using an e-greedy exploration strategy with exponentially decreas-
ing exploration rate per episode. Then it updates its Q-value.

Results: The algorithm is tested on 13 different (synthetic and real) networks and com-
pared against three other algorithms namely A-tolling (Sharon et al. 2017) (see 6.1.1), toll-
free Q-Learning where they apply the same model without tolls and one other mechanism.
Their method provides similar results as A-tolling and better performance than toll-free
Q-learning to approach SO. In comparison to A-tolling this method has a learning scheme, a
fairer tolling scheme and convergence guarantees. The work however highlights that speed
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of convergence is a major area for improvement. A similar work is (Ramos et al. 2020) in
which it is also highlighted that speed of convergence is a major area for improvement.

6.7.2 Multi agent reinforcement learning - heterogeneous agents

An algorithm capable of realigning agents’ heterogeneous preferences over travel time and
monetary expenses to obtain a system efficient equilibrium (SO) is Generalised Toll-based
Q-Learning (Ramos et al. 2020). It also includes a mechanism to enforce agents to truthfully
report their preferences. The key difference with (Ramos et al. 2018, 2020) (see 6.7.1) is
the calculation of the cost function. The objective of the tolling scheme is to bring the User
Equilibrium closer to the System Optimum.

Traffic model set-up: Given (G, V, D): (¢,) In this model with heterogeneous preferences
for a vehicle v, travel time and toll are weighted by (1 — n(v)) and n(v) respectively. Fur-
thermore the cost includes side payments indicated by py,(,):

e (0"7") = ~puw) + Z ) #tt(L1) + () * 7(0, L1103

o~>d

The side payments are a redistribution of a part of the collected tolls to the vehicles as not all
collected tolls are required to operate the toll system. (R, M) as in Sect. 6.7.1

RL set-up: The reward R is as Equation (41) and Q-learning algorithm as Equation (42).
The difference is that the reward also includes the side payments, described above. To
enforce truthful reporting (to prevent misuse of the side payments) the number of times an
agent has not chosen the least-cost action based on their preferences is logged. If the number
of inconsistent actions, which means reporting action a and executing action a’, exceeds a
threshold the agent is expected to be cheating which leads to a penalty.

Results: The algorithm is tested on 15 different (synthetic and real) networks. The results
are compared with the algorithm in (Ramos et al. 2018, 2020) (see 6.7.1) and with A-toll-
ing from (Sharon et al. 2017) (see Sect. 6.1.1). In general, GTQ-learning was able to con-
verge to a SO efficient equilibrium, leading to a reduction of 30% in Average System Travel
Time. Furthermore, when vehicle preferences were applied, GTQ-learning outperformed in
almost all cases the other two algorithms. It was also experimentally demonstrated that side
payments did not deteriorate the equilibrium. However the other algorithms also achieved
reasonable results. The mechanism to prevent misreporting, neutralized agent misreporting,
restoring system optimality. Although the mechanisms (Ramos et al. 2018, 2020; Sharon
et al. 2017) produced similar results, results in this study were obtained under more real-
istic assumptions. The work compares to (Ramos et al. 2018, 2020) which does not take
heterogeneous preferences into account and to (Sharon et al. 2017) which does not work
in a decentralized way. All three do ignore misreporting and do not provide for tax returns.

6.8 Other works

One work (Nisha et al. 2024) describes an approach to deploy RL for road pricing using a
comprehensive state, action and reward set. In their experiments, they compare their solu-
tion with three traditional models (Decision Tree, SVM and logistic regression) which are
outperformed. The main part of the work describes the design process and the components
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of a complete solution. Although it highlights the potential of RL for road pricing, we
exclude it from further analysis as it does not provide details on the (RL-) design itself.

Another work (Chiou 2024) combines a stochastic mathematical program with equilib-
rium constraints with a Q-learning performance index (KAQPI). This value function takes
a combination of the rate of delay, the number of stops in the network (caused by traffic
signals) and the sum of link tolls which it strives to minimize. The main focus in this work
is stochastic optimization and modeling, which we exclude in this survey. We refer to the
work for details.

6.9 An assessment of the potential of RL for road pricing

From the works analyzed in this Section, it is a challenge to specifically identify what con-
tributes the most to the demonstrated performance improvements. As can be inferred from
Table 3, there is a wide variety in toll agent objectives, RL design choices, and vehicle char-
acteristics. In addition, most of the works use different simulators (see Table 6) and perform
their experiments on different road networks (Table 7), which also may affect the results.
This further complicates drawing general conclusions whether the performance is attrib-
utable to the agent, the specific traffic network settings, or the choice of suitable (hyper)
parameters.

Nevertheless, across all works in this Section, seven provide a percentage for the reduc-
tion of Average/Total System Travel time (see Table 5). We observe that the bandwidth of
reduction ranges from 6% (Sect. 6.2.6) to 44%,45% (Sects. 6.1.1 and 6.2.4). The other
works had results between these maxima and minimum. While these results suggest that
using RL for road pricing can lead to meaningful reductions of Average/Total System Travel
time we caution against interpreting them as directly comparable. The works differ signifi-
cantly in terms of traffic models, simulation environments, road networks, demand patterns,
agent designs and RL algorithms. These variations make it difficult, maybe even impossible,
to attribute these performance gains to specific factors or draw generalizable conclusions.
However, the diversity across the works demonstrates that various combinations of environ-
ment, agent design and objectives can achieve beneficial outcomes. We consider even a 6%
improvement in Average/Total System Travel time to be a significant achievement, under-
scoring RL as a relevant contribution to solving the road pricing problem.

7 Challenges and future research directions

The works covered in Sect. 6 of this survey demonstrate the usefulness of Reinforcement
Learning for various road pricing scenarios, ranging from tolled lanes to larger road real
world networks and corresponding demand data.

7.1 How identified challenges are addressed

Either explicit or implicit, the challenges related to partial observability, credit assignment
and non-stationarity have been addressed in most of the surveyed works. However, given

the limited number of works, we cannot conclude which factors contribute the most to driv-
ing performance and effectively addressing these challenges. On the other hand, a CTDE
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architecture in multi agent cases and the use of pre-processing networks provide positive
indicators of their usefulness. Scalability and generalizability have received little attention
in the surveyed works in Sect. 6.

Partial observability In some of the approaches (Sect. 6.4.1), partial observability was
explicitly noted, in which case the observation was provided to the learning algorithm.
It also modeled noise effects of sensors. In the other single agent approaches, the choice
(and implicit simplification) to frame the problem as an MDP enabled the use of simpler
algorithms and demonstrate their feasibility. In the solution approaches involving multiple
agents, the CTDE architecture (Sects. 6.2.2, 6.2.3, 6.2.4, 6.2.5, 6.3.2 and 6.5.2) and the
use of communication between agents (Sect. 6.2.2), address this challenge. In the single
case where DTDE is compared with CTDE (Sect. 6.5.2) the CTDE architecture outper-
forms DTDE. We observe that in the other DTDE cases, the toll agents were not using
state (Sects. 6.6.2, 6.7.1, 6.7.2) or no comparison with a CTDE architecture was performed
(Sect. 6.3.1).

Credit Assignment The approaches in Sects. 6.2.2, 6.2.4, 6.2.5 address the spatio-tempo-
ral dependencies by using a GCN (Kipf and Welling 2017) and transformer (Vaswani et al.
2017). The multi agent credit assignment challenge has various kinds of solution mecha-
nisms surveyed in the works (Du and Ding 2021; Gronauer and Diepold 2022; Wong et al.
2022). In Sect. 6.3.2 one of these mechanisms (value decomposition) is used, in other works
this challenge is not explicitly addressed. We can not conclude that Credit Assignment,
for RL applied to road pricing, is solved. Credit Assignment in this domain is complicated
because routing decisions, as observed from the works, also depend on effects from other
traffic. A clear approach to link the toll price, taken into account by individual vehicles, and
its effect on future traffic on that road has not emerged from the works.

Non-stationarity A CTDE architecture and communication (Sects. 6.2.2, 6.2.3, 6.2.4,
6.2.5, 6.3.2 and 6.5.2) partially address this challenge. However, the challenges when more
complex vehicle behavior is modeled (Sect. 6.6.1), and when assumptions about vehicle
behavior may not hold in the real world (Sect. 6.1.1) remain. If in addition aspects like mode
choice behavior (other means of traffic) and modeling (temporary) disruptions of roads in
the network are considered, the non-stationarity challenge is further exacerbated.

Scalability In most of the works, learning is first demonstrated on a synthetic network
followed by experiments on real world networks. As noted (Sects. 6.1.1, 6.2.2 and 6.2.3) a
larger state and action space is used than for example in classic RL problems like cartpole
or mountain car (Sutton and Barto 2018) but overall the state and action space remain small.
The impact of state and action space on performance (Sect. 6.3.1) and of the traffic model
used (Sect. 6.4.1) was mentioned as related challenges in the analyzed works. The works
(Sects. 6.2.1, 6.5.2) specifically highlighted scalability as an issue.

Generalizability This aspect was partially highlighted (Sect. 6.4.1) to consider how algo-
rithms could transfer across different traffic models. In the works, different topologies or ori-
gin—destination pairs were not considered. As generalizability would increase acceptance in
real-world implementations, this challenge has in our view only minimally been addressed
and therefore also remains. We do note that existing, known approaches for the above chal-
lenges, surveyed by, among others, (Du and Ding 2021; Gronauer and Diepold 2022; Wong
et al. 2022) are only to a limited extent utilized.
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Table 4 Scaling parameter Section 2]
softmax 621 0.5
6.2.3 0.5
6.2.6 0.03
6.3.1 1.0
6.5.1 0.015
Table 5 Reduction in travel time Section Reduction
6.1.1 45%
6.2.1 15%
6.2.4 44%
6.2.5 18%
6.2.6 6%
6.3.1 25%
6.7.2 30%

With respect to the design of state, action, and reward, in each of the works, tailor-made
state/observations were created for each environment. The actions varied from discrete to
continuous toll prices, for roads and routes. Reward functions also showed a great variety.

7.1.1 Additional findings

In the simulated environments, covering both synthetic and real-world networks, agent
learning has been demonstrated. Nevertheless, specific learning issues noted in the works
remain. These were finding the balance between exploration and exploitation (Sects. 6.3.1,
6.3.2 and 6.6.1), sub-optimal performance because of the aggregation level of the state space
(Sect. 6.3.2) and convergence challenges (Sect. 6.1.1) related to changing traffic patterns.

Furthermore, experiments demonstrated that in a multi-agent setting an optimal number
of agents exist (Sect. 6.2.2) and that more fine-grained observation and action spaces not
necessarily lead to better performance (Sect. 6.3.1). However, a detailed analysis of these
findings was left as future work by the authors. Another observation concerns the choice
of the scaling parameter 6 used in stochastic route choice models (see Eq. 4 and Table 4).
The value of € varies considerably across the surveyed works, affecting the resulting traffic
distributions. A detailed analysis of the selection or calibration of 4, and its impact on agent
performance, was generally not provided. In contrast to learning in simulated environments,
none of the works covered off-line learning based on real data, or learning in the real world.
Unfortunately, despite being present and of major importance, existing literature on RL for
road pricing has not elaborated enough on deployment barriers. There are technical chal-
lenges, like legacy infrastructures, data acquisition, integration, quality and exploration.
Financial obstacles are definitely present, like deployment, operational and maintenance
cost. Furthermore, there are societal issues, like acceptance and use by the general popula-
tion, or diversion of traffic through narrow roads or quiet neighborhoods. Last, but not least,
there may be physical bottlenecks, like the ability to install high tech equipment or commu-
nication coverage issues. To the best of our knowledge, no cities or transport agencies have
yet implemented full-fledged reinforcement learning-based road pricing schemes.
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Although all solution approaches demonstrated convergence in learning, the variability
in selection of among other the environment (including the use of different traffic simulators
and different networks), multi-agent architectures, agent algorithms and evaluation mecha-
nisms, makes comparison of solutions hard. The inherent variability in RL experiments,
where evaluation presents significant challenges (Patterson et al. 2024), is aggravated by
differences in setups in the works described above. This points to the need for a common
benchmark.

7.2 Future research directions

In addition to the challenges which remain, as noted above, we give two future research
directions based on what we think has not, or only to a limited extent, been covered.

First, in general, we observe that an accepted benchmark, to compare the solutions
against, is lacking. In the works we observe that the features of state and observation differ,
as well as the reward signals and actions. Furthermore, pre-processing of data, the (Rein-
forcement Learning) algorithms, and also the means of network loading vary per surveyed
work. This makes it hard to specifically identify what causes the changes in behavior and
performance of the models.

A significant next step for road pricing using Reinforcement Learning lies in establishing
standardized benchmarks and fostering shared datasets. These are essential to enable fair
comparison of diverse solutions and accelerate progress in the field. We envision two pri-
mary objectives for such benchmarks: First, to rigorously test and compare the performance
of various toll agents and their algorithms, a dedicated simulation environment would be
highly beneficial. Such an environment, ideally constructed using frameworks like Gym-
nasium (Towers et al. 2024), PettingZoo (Terry et al. 2021), RL4CO (Berto et al. 2023) or
BenchMARL (Bettini et al. 2024), would need to encompass diverse network topologies,
realistic demand patterns, and standardized settings for route- and departure time choice,
alongside consistent network loading models. Second, for demonstrating scalability and the
efficacy of agents in more realistic, complex traffic settings, future efforts should focus on
meticulously detailing the specific simulators used, their full range of traffic settings, and
comprehensive interface specifications between the agents and simulators. Crucially, this
must be coupled with initiatives to facilitate the sharing of generated datasets (like demand
and traffic patterns), which is paramount for enhancing reproducibility and comparability
across studies.

By pursuing these avenues, the community can collectively move towards more robust,
reproducible, and impactful research in RL-based road pricing. To expand further on this,
performing real world experiments is also needed to test the validity of outcomes from
simulations.

Next, road pricing is only one of a range of ITS mechanisms. As exemplified by other
surveys (Sect. 1.1) mechanisms like traffic signal controls, variable speed limits and ramp
metering are modeled using an MDP formulation as well and involve agents which take
actions. Understanding the interaction between agents from other ITS and road pricing
agents is essential. First by observing and analysing emergent behaviors. Second by creat-
ing and studying agents which can cope with these situations. Obviously the same could be
said about the vehicles; in most of the works these are modeled as probabilistic actors who
are not learning.
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Moving beyond the strict scope of the works covered in this survey, future research could
explore connections with adjacent fields such as economics, sociology, and issues of equity
and fairness. There is also significant potential in multidisciplinary approaches, where theo-
retical solutions are tested and evaluated under real-world conditions. This would include
technical integration with existing traffic management systems.

8 Conclusions

Road pricing is an effective and convenient method to address traffic congestion. It poses
various challenges given its traffic dynamics, the complex behavioral patterns of vehicles
and the need to periodically adjust the tolls in the traffic network by one or more toll agents.
Reinforcement Learning is a promising solution to tackle these challenges as it lends itself
well to model the interaction between traffic network and toll agents. It provides algo-
rithms, both for single and multi agent cases, to optimize the performance of the traffic
network to the benefit of vehicles and society. In this work we presented a traffic model,
relevant elements of Reinforcement Learning and the different ways Reinforcement Learn-
ing can be used for effective toll pricing. While the current solutions in the works make the
potential of RL abundantly clear, research challenges remain before solutions are ready for
implementation.

Based on our analysis, partial observability, non-stationarity and credit assignment were
partially addressed in the surveyed works. While the existing literature in Reinforcement
Learning on addressing partial observability, non-stationarity, and credit assignment chal-
lenges provides valuable insights, opportunities remain to more effectively leverage these
in the context of road pricing. Scalability and generalizability, critical challenges in Rein-
forcement Learning, and real-world experiments received limited attention in the surveyed
works. We also emphasized the need for a benchmark to enable comparison between solu-
tion approaches. Finally, specific challenges related to interaction between heterogeneous
agents would benefit from more research in this domain.

Appendix A

A.1 Reinforcement Learning

In RL (Sutton and Barto 2018), an agent interacts dynamically with an environment at
each of a sequence of discrete episode steps ¢ = 0,1,2,3,.... RL is about learning from
these interactions to achieve a goal. The agent is the learner and decision maker, the envi-
ronment is everything else. Framing the problem of learning from interaction to achieve
a goal can be done with a Markov Decision Process. A Markov Decision Process (MDP)
is formally defined as a tuple (S,.4, P, R) where S is the set of all states s, a complete
description of the environment. A is the set of all actions @, P: S x A x S — [0,1] is
the transition probability function mapping from any state s € S to any next state s’ € S
after execution of a € A, also denoted by P(s’|s,a). R: S x Ax S — R is the reward
function that provides the reward r, also denoted by R(s, a, s’). The agent seeks to maxi-
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Fig. 9 Agent environment interaction in a
MDP (Sutton and Barto 2018)
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mize the total amount of reward over time through its choice of actions using a policy .
Policy (als) gives the probability of taking action a given state s. Policies can be stochastic
(m(a|s)) or deterministic (7(s)). The MDP and agent, following the policy m, give rise to a
sequence of states Sy = s, actions A; = a and rewards R; = r which is called a trajectory
T: T = Sy, Ao, Ry, 51, A1, Re, So, Aa, . ... An episode is a trajectory T that has reached a
final episode step H. See Fig. 9 that illustrates agent environment interaction (Fig. 10).
The probability of a trajectory 7, following policy 7 and Sy sampled from the start state
distribution, is:

t=H-—1

p(T|m) = p(So) T(A¢|Se)p(Se41|St, At). (A1)

The return G; after episode step ¢ is defined as the cumulative discounted reward over time:

H

Gy = Z ’)/i_t_lRi = Riv1 +vGi11, (A2)
i=t+1

where v € [0, 1] is the discount factor, reflecting the importance of future rewards. The goal
of the agent is defined to maximize the total expected discounted return per episode:

J =Er pr)Go(T). (A3)

Any policy can be used by an agent for execution in an environment. RL algorithms specify
how to find an optimal policy 7. using the experience gained by the agent. In such an algo-
rithm, the agent’s experience consists of one or more episodes. On the basis of this experi-
ence, the agent can learn (an estimate of) the optimal policy. Where the agent generates its
own data we refer to this as online learning, while off-line learning refers to the situation
where the data is collected by another policy (Levine et al. 2020). Experiences in Partially
Observable MDPs, where the agent does not have perfect state information, lead to partial
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observations (Kaelbling et al. 1998, 1996). In that case we need and use a set of observations
O and an observation probability function Z : S x A — O.

Value Functions. We measure the value of a policy, given a starting state, by a value
function to compare the performance of different policies. The value function, v, : S — R
is defined as the expected return when starting in state s, at any episode step ¢ and follow-
ing policy 7 thereafter. Similarly, the action value function, ¢, : S x A — R, also known
as g-value function gives the value when taking action a when in state s, following policy
« thereafter.

For MDPs this can be defined as:

’UTr(S) = Eﬂ[Gt‘St = S}. (A4)

Similarly, the action value function, ¢, : S X A — R, also known as g-value function or
g-function, is defined as:

qﬂ'(57a) :Eﬂ'[Gt‘St:SvAt :a]7 (AS)

which gives the value when taking action @ when in state s, following policy 7 thereafter.

The estimated value of a state S; is denoted as V(.S;) and for g-value functions the
estimated value is denoted as Q(St, A;). Approximate values, based on a function param-
eterized by weights 0, are denoted as 9(s, 0) or ¢(s, a, @). The relation between the value
function v, (s) and action-value function ¢ (s, a) is that, given the same state, the value
function is the expectation of the action-value function with respect to the actions:

ve(8) = ZTT(U"S)QW(&U‘)' (A6)

a

The difference between the action-value function and value function for a state and action
can be considered as an evaluation of the policy compared with the average policy and is
called advantage:

A(St, Ar) = Q(St, Ar) — V(Sy). (A7)

To solve an RL problem usually involves estimating the value function which describes,
in terms of expected return, how good it is to be in a certain state s. We then use the value
function to find the optimal policy. If we substitute the return (A2) in the value function
(A4) we can derive:

vr(s) = Zw(a|s) Zp(s’,r|s,a) [r+yve(s)], Vs €S. (AS)

Equation (AS8) is called the Bellman equation for v, and provides the recursive relation

between the value of a state and its successor states. For the action-value function the Bell-
man equation reads:
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Zps r|s, a) r—l—'yz d'ls)g.(s',a")| . (A9)

If we consider a policy 7, for which the expected return is larger than from any other policy
7' for all states s, we call this the optimal policy 7. The optimal value function and optimal
action-value function are defined as: v, (s) = max, v, (s) and g.(s,a) = max, g (s, a). If
both the transition function P and reward function R are known, we can find the optimal
policy by planning, using dynamic programming. These are called model-based methods.
However, when P and R are unknown, we need to solve them using a model-free RL algo-
rithm. These are based on learning; interacting with the environment, obtaining rewards and
states and improving the policy based on this.

Apart from strictly adhering to the policy m(a|s) by taking action @ when in state s,
greedy and e-greedy policies can be distinguished. A policy 7 is called greedy if it always
selects the action with maximum estimated action value, in which case the agent is exploit-
ing the current knowledge of the value of its actions. A policy 7 is called e-greedy if the
agent acts greedily most of the time, and with probability e, it selects an action randomly.
If one of the non-greedy actions is chosen, we call this exploring because this exposes the
agent potentially to new experiences. This enables improvement of the estimate of the non-
greedy action’s value.

A. 2 Solution methods to find the policy

We distinguish three main categories: methods based on value functions, methods directly
updating the policy and methods based on a combination of these, actor-critic.

A.2.1Value based methods

Value based methods search the optimal policy based on the (action-)value function. This
means that the value is estimated or approximated first. Based on these values the policy is
optimized. Model free Monte Carlo (MC) methods learn value functions and optimal poli-
cies from experience by sample episodes. MC methods update estimates of values of a state
V' (S¢) by waiting for the sample return G, of an episode and use that as target for V' (.S).

V(St) < V(St) + « [Gt - V(St)] . (AIO)

where « € (0,1] is a constant step-size parameter. Model free Temporal Difference (TD)
methods update estimates, based on other learned estimates. For example, where MC needs
to obtain the sample return (A2), the one-step TD method, TD(0), uses the reward R;, 1 and
the discounted estimate of the value of the next state ¥V (S;11), to update the estimate of

V(St):

V(St) <= V(St) + a[Rip1 + 9V (Seq1) — V(Se)] .- (A11)

in which we call R¢11 + 7V (Si4+1) the TD(0)-target and d; the TD-error:
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5,5 = Rt+1 + fYV(SH»l) - V(Sf) (A12)

In RL, d; occurs in various forms depending on the number of steps (N-step returns) taken
into account to determine the target. An illustration of a value based method is the Q-learn-
ing (Watkins and Dayan 1992) algorithm. Q-learning, is an off-policy RL algorithm. Off-
policy means that the selection of actions is based on another policy than the actions used to
estimate the Q-value. The update function for Q-learning is:

Q(Si, A1) & Q(Si, Ar) + @ [Rusy + 7 max Q(Sps1,a) — QS At)} . (A13)

The learned Q-function then directly approximates the optimal g-function g, (s, a) (Watkins
1989; Watkins and Dayan 1992).

A.2.2 Policy based methods

A policy based method (Sutton et al. 1999), directly optimizes the parameterized policy
of an agent with respect to the expected return by gradient descent. The stochastic policy
w(als, @) (hereafter denoted as 7g) is parameterized by 0 and differentiable with respect to
its parameters. Policy gradient methods learn the policy parameters based on the gradient of
some performance measure .J(7mg) (hereafter noted as J(@)) with respect to 8. The param-
eter update is expressed as:

01 =0y +aVJ(6y), (A14)

where V.J (6¢) is an estimate of the gradient of the performance measure, with respect to
0. (Sutton and Barto 2018). If we define, in an episodic case, the performance measure as
the value at the start of the episode:

J(0) = vy (50), (A15)
then, with £(s) as the on-policy distribution of states under 7 it can be derived that:

VI(6) x> uls) Y gn(s,a)Vr(als, 0). (A16)

Equation (A16) is called the policy gradient theorem (Sutton et al. 1999)(Marbach and
Tsitsiklis 2001) for stochastic policies. A deterministic case leading to 7(s,8) can be
derived as well (Silver et al. 2014). A classical example of a policy gradient algorithm is
REINFORCE (Williams 1992). From the policy gradient theorem (A16), it can be derived
that:

VJ(6) x E, [G W(A”S“o)}

' m(A¢|S:, 0) (A7
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where the expectation is taken with respect to the policy 7. The expression between the
brackets can be sampled on each episode step and be used to update 6:

VW(At|St, Bt)

01 =0, +aoG———5———.
t+1 t t (44155, 67)

(A18)

REINFORCE uses samples of the full return, and therefore may have a high variance which
slows learning. To address this, the policy gradient theorem can be generalized to include a
baseline function. As long as the baseline function does not vary with actions a any function
b(s) can be used:

VI(0) 0 3 (s) Y (4x(5.0) — b(s)) V(als.) (A19)

In addition to the Policy Gradient method discussed above there are Natural Policy Gradi-
ent (Kakade 2001) and Finite Difference Policy Gradient (Kohl and Stone 2004) methods as
different approaches, also directly optimizing the policy.

A.2.3 Actor-critic methods

A frequently used architecture, actor-critic (Degris et al. 2012)(Degris et al. 2012), com-
bines the value-based methods and policy-based methods described above. Actor-critic uses
the policy gradient theorem (A 16) and value functions (A4, AS). In actor-critic algorithms
the actor is the learned policy 7(als, @) and the critic the learned value function 9(s, ),
or the action value function §(s, a, ). In the example below a one-step actor-critic method
uses the TD-error d;:

8 =1 +y0(s',9) — 0(s,9). (A20)
Replacing ¢, (s, a) in (A16), with the TD-error (A20) leads to:

VI(6) < > pls) Y (1 + (s, 9) — (s, 9)) V(als; ). (A21)

The learning method to update the critic’s parameters ¥ can be performed using semi-gra-
dient TD(0). Semi-gradient TD(0) takes the effect of changing the parameters 9; on the
learned state value (9(St, 9¥) into account, but not on the target in minimizing d;.

A.2.4Issues and challenges

Common issues in RL problems are credit assignment (which action leads to which out-
come), sparse rewards (not delivering non-zero rewards frequently enough) and sample effi-
ciency (Li 2017). Important criteria, to evaluate the performance of algorithms, are whether
they are stable (do they converge), their efficiency (how long does it take to converge),
generalization (if they converge, can they be generalized) and scalability (can the solution
scale efficiently with growing state and action space). Practical challenges exist as well. Due
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to the large number of design decisions in Reinforcement Learning experiments, much can
go wrong illustrated by a listing of 20 common errors (Patterson et al. 2024).

A.3 Multi agent reinforcement learning

A Multi Agent system describes a system in which multiple agents take decisions based on
their own policy and interact with the environment (Gronauer and Diepold 2022; Wong et al.
2022). If this is done in the context of RL this is called Multi Agent Reinforcement Learning
(MARL). Depending on the situation and objectives, the agents may compete, cooperate or
demonstrate mixed behavior and may or may not communicate with each other.

AMARL system can be formalized as a Markov Game which is a framework that gener-
alizes MDPs from one agent to Multiple Agents (Gronauer and Diepold 2022; Littman 1994;
Shoham and Leyton-Brown 2008). A Markov Game is defined as a tuple (M, S, A, P, R)
where: N is the set of N > 1 interacting agents n, S is the set of states observed by the
agents s, A is the joint action space A x --- x AN where A" is the action set of agent
n, P:8x AxS8 —[0,1] is the transition probability function mapping from any state
s € S to any next state s’ € S after execution of a € A, also expressed as P(s'|s,a),
R :S x A xS — Risthe reward function that provides the agent specific reward ", also
expressed as R(s, a, s, n).

The policy 7 taken by agent n is denoted as 7. A joint policy 7 where m = {#! ... 7V},
is a mapping from states s to probabilities of selecting a: 7 (a|s) is the probability of A; = a
given S; = s. If all agents n follow a policy 7™ € II™ at time ¢ in state s, then joint action a
leads, with respect to P, to a new state s’ and each agent gets individual reward r™ from R.
As per convention —n means all agents exceptnsom " = {z! ... 7"~ L gl 7N}

As in the Single Agent case outlined before, the objective of each agent is to optimize its
return. A (Nash) equilibrium (Nash 1950) exists in the situation that the set of policies .
consisting of one policy 7} for each agent, maximizes the return for each agent:

JHrl,w ) > JN (" w ") VAt e T (A22)

This means, informally, that no agent, given policies of other agents fixed, can improve by
unilaterally deviating from 7. We note that multiple Nash equilibria may exist with differ-
ent returns, making evaluation of Multi Agent learning harder than Single Agent learning. If
in MARL all agents receive the same reward R this is a fully cooperative setting; if they are
encouraged to cooperate but don’t get an equal reward it is called cooperative. If the sum
of rewards of the agents equals zero, it is a competitive setting; each agent in this case tries
to maximize its own reward and minimize the rewards of others. Mixed settings are neither
cooperative nor competitive. These are also called general sum games.

A.4 Solution methods
MARL algorithms encompass similar solution methods as Single Agent RL; value based
(e.g. (Tan 1993)), policy based (e.g. (Singh et al. 2000)) or actor-critic (e.g. (Foerster 2018)),

which are combined with concepts from game theory (Busoniu et al. 2008; Hernandez-Leal
et al. 2019). The three approaches below address different training and execution methods
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for agents. Architectures and more detail of the three approaches can be found in (Albrecht
et al. 2024; Gronauer and Diepold 2022; Wong et al. 2022).

A.4.1 Decentralized training decentralized execution (DTDE)

An approach to find the policy for each of the agents in the Multi Agent setting would be
to use the same approach for each individual agent as in the Single Agent setting. Each
of the agents takes its input from the environment, take its own actions and get its own
rewards. The agents do not share information with other agents (Bono et al. 2019; Gronauer
and Diepold 2022). An example is the Independent Learners approach (Claus and Boutilier
1998; Kok and Vlassis 2006) and is based on Q-learning. Each agent has an individual table
for Q-values and the global Q-function is defined as a linear combination of individual con-
tributions. The local Q-function is then updated as:

Q (51, A7) = Q" (51, A7) + @ [Riy (St Ae) + Y max Q" (St,a7) — Q(S1, A7)
' (A23)

Note that the global state S; is used to determine the agents’ O-values as well as to determine
the individual reward R}, | (S;, A;). A disadvantage of this approach is that the environment
appears non-stationary (Padakandla 2021) to the agents. By non-stationarity we mean that
the dynamics of the environment change over time. The agents do not have access to the
other agents’ actions, nor can they perceive the joint action. Finally, each agent is learning,
that is updating its own policy independently, impacting the other agents’ decision making.

A.4.2 Centralized training centralized execution (CTCE)

In another approach, agents learn their policies based on common or shared information,
for example local observations or policies. The collection of observations from each of the
agents is used to train a central policy. The central policy sends the actions to all agents for
execution. In centralized Q-learning, the update equation (Albrecht et al. 2024) becomes:

Q(St, At) — Q(St, At) + « Rt+1(St, At) + ’YIHSJX Q(St+1, a) — Q(St,At) . (A24)

A disadvantage of this approach is that the state-action spaces grow exponentially with the
number of agents. This could be mitigated by policy factorization using the combined obser-
vations, but also by creating individual policies, leading to individual actions. Although
this would significantly reduce the size of the action space, the exponential growth of the
observation space would still be a problem (Gupta et al. 2017).

A.4.3 Centralized training decentralized execution (CTDE)
Yet another approach would have homogeneous agents having an individual policy, using

local observations to a distribution over individual actions but enable them to share informa-
tion and/or resources during training. Agents execute their policies based on local observa-
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tions. With this approach, non-stationarity and partial observability are mitigated even if
other agents’ policies are changing (Wong et al. 2022).

A.4.4Issues and challenges

MARL have additional challenges when compared to Single Agent RL. In addition to credit
assignment, sparse rewards, stability and generalization these are partial observability, non-
stationarity and the effectiveness of different training schemes (Wong et al. 2022). Except
for the cooperative case, it is unlikely that agents share observations, policies or parameters.
Additional challenges in that case are observing, analyzing and acting on the other agents
without sharing the information as described in the cooperative approaches (Busoniu et al.
2008; Hernandez-Leal et al. 2017).

A.5 Deep reinforcement learning

Deep Reinforcement Learning algorithms use neural networks as function approximators to
solve problems which have continuous or high dimensional state and/or action spaces. We
provide relevant examples below, which are selected as these or modifications are used as
part of the solution architecture in road pricing. For details on the cited algorithms we refer
to the original works.

A.5.1 Value based algorithms

DQN (Deep Q Networks)(Mnih et al. 2015) is an adaptation of Q-Learning. A separate cur-
rent Q-network Q(s, a, 0) and a target Q-network Q(s, a, 8) are used to determine the opti-
mal policy. The experiences gathered and stored by taking actions based on Q(s, a, 8) are
used to learn the parameters @ by minimizing a loss function using the current Q-network
and target Q-network. Periodically the target parameters 6’ are updated using 6

A.5.2 Policy based and actor-critic algorithms

In Proximal Policy Optimization (PPO) (Schulman et al. 2017) an update to a policy is
maximized subject to a constraint on the size of the update. Maximization is performed
using clipped probability ratios, which compare the new policy mg and old policy 7g,,,. In
another solution approach, Soft Actor Critic (SAC) (Haarnoja et al. 2018, 2017), the reward
is augmented with an entropy term. Adding the entropy term improves both exploration by
acquiring diverse behaviors and in addition, the algorithm is more robust for model and
estimation errors. Yet another approach, Deep Deterministic Policy Gradient (DDPG) (Lil-
licrap et al. 2015), combines ideas from DPG (see Sect. A.2 and (Silver et al. 2014)) and
DQN (see above). It is a model free, off-policy actor-critic algorithm with neural networks
as function approximators.

A.5.3 Multiple actor/learner for value and policy based algorithms
These algorithms parallelize part of the learning experience. Each actor interacts with its

own version of the environment and experiences are shared. Mnih et al. (2016) proposed
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Fig.5 Asynchronous updating of param-
eters by multiple agents (Mnih et al.

2016)
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Fig.7 DADO (Jin et al. 2021)

a framework Asynchronous Advantage Actor Critic (A3C) that uses asynchronous gradient
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Fig.8 MAGT-toll (Lu et al. 2024)
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descent for optimization. Multiple agents operate asynchronously, in parallel, on multiple
instances of the environment. Periodically the target network of the actor is updated and an
asynchronous update of the global parameters is performed by sending the gradients. Mul-
tiple updates from the various learners are applied to the central parameters and because of
this, are likely to be less correlated, stabilizing learning. See Fig. 5 for a case with M agents
(both actor and learner), indexed by i, asynchronously updating their local parameters to
the global shared parameter network. In case of a single agent it is referred to as A2C.
Approaches to enhance DDPG are D3PG and D4PG (Barth-Maron et al. 2018; Bellemare
etal. 2017).

A.5.4 Multi agent reinforcement learning
A range of Multi Agent RL algorithms using neural networks exist (Albrecht et al. 2024;
Gronauer and Diepold 2022; Wong et al. 2022). The surveyed works mostly use an actor-

critic variant using a CTDE architecture, specifically designed for their use case and will be
discussed there.

Appendix B

@ Springer



0. Vermeulen et al.

Page 50 of 58

65

SYI0M POKDAINS AU UT PASN S[OPOL UOHR[NUIIS UT KJISIOATP AU} AJRIISN[I O} JULAUI ST O[qE) SIY ],

Jojenuirg woisny

NuIUIS/gV IIVIN

ONNS

I0JB[NWIG WOo)sny)

JuswuonAuyg Ty AemySTH woisn)

(ALLD) Jore[nuurg wojsn)

(NLD) Jorenuig wojsnyy

Joje[nuwiig wosn)

MOLJAND

S (Ydg) 1orenuiig woisn)y
A A (Ydg) 1ore[nuig woisny)y

A’ (ALLD) Joje[nuitg Y1 q woisn)
S[opow uone[nNwIg

(0zoT
'R
souwrey)
L9

(810C
TeR

(¥Toz e

sowrey]) AueAenyey))

Lo

799

(¥1oz
uezzeg pue
soreAe] )

199

(zeoT
'R
opes)
9

(1z0T
TeR
ores)
159

(€z0T
e
Sueyz)
Y9

((0z02)
TeR (810T
Kopueq sojhog pue
I't'9 AKopued) 7'¢'9

(S10z tns
- pue
nyz) 1°¢9

(yzoT
TR
oH)
9T9

(¥zoT
e
ny)
$T9

(zeoT
'R
Suepy)
v'T9

(1zoz - (610 (810T (810
TR TR e 'R
uip) Q) udYD)  10EZIN)
€79 TT9  1T9 1’19

SyIoMm @O%ogw Ul pasn SIOJe[NUIIS JO MIIAIDAQ 9 d|qe]

pringer

A's



65

Page 51 of 58

Reinforcement learning for road pricing: a review and future directions

2

SN SS

»

PRINEING
yoauaog [d[[ered
}oaua[og 21y ],
yoausog 9[3uls
ssardxgAD

JI0MIDN
Kemssardxg ojdung

JI0MIDN
aue ssaidxyg oeJoN

nxyg

913urg Anug o[3urg
juowSog

[1oL ssaxdxay rg1

SHOMIN SHA
SUOISAI JO SHOMIN
Ay ueurp

Joupeoy 0Mog
ueyeyURIA.
noyzsuey

JI0MIAU XS TenyuId)
JON 9[oy A d1odeSurg
uoidoy

Tenua)) arodeSurg
oroyuy ueg umoydn
unsny umoumo(]
S[[eJ-Xnolg
payrjdung
S[[ed-Xnolg
SHIOMIOU PrOY

(0zoz
e
sowey])
TL9

(810T
NRE]
souwrey)
1'L9

(¥zoz

‘Te 30 Ajrea
-enjeyD)
799

(r10T
uezzeq
pue sarea

L) 1'9'9

(zeoe
TR
oges)
T$9

(120z
T’
ojes)
159

(gz0T
TR
Sueyz)
Tr9

((0z020)
‘Te 10 Kap

-ued 1'v°9

(8107 (s10C
sojog pue LSNP pue

Aopued) €9 NUZ) 1°¢9

(yeoc
T’
oH)
979

(yeoz
T’
o)
$T9

(zeoe
TR
Suep)
¥'T9

(tcoz  (610T  (810T
TR TeR TeR
uif) nY) - udy))
€79 TTY 179

(810C
e
19BZIA)
e

SYIOM PIKOAINS UT SHI0MIOU POI JO MIIAIOAQ [ d|qeL

pringer

A's



0. Vermeulen et al.

Page 52 of 58

65

SYI0M PAAIAINS Y} UT PASN SHIOMISU PLOI UT AJISIOAIP Y} AJBNSN[[I O} JUBIW ST J[qR) SIY T,

VA SIOSNYOBSSBIA UIAJSET

A wioyeuy

% » MO

S, L9d ‘sgd ‘cad ‘199

v N, Lg-19

aue]

VA Ie[n3oy ‘oue [[oL

Vi SHOMION 1S9
(0z0T (810 (¥zoT 1oz (czoz  (1zoT (€20T (rzoz  (vzoz (oo (1o (610 (810T (810T
e Tese  [ele Auea uezzeq ’R e e ((0z02) (810T (s10T &R e &P e e e e
sowey) souwrey]) -eDJBYD)  Pue SaIeA 01es) o1es) Sueyz) e1o Aop sojAog pue LINSnY pue 9H) ny) Suep) urf) niQ) wy))  1eeZIN)
TL9 I'L9 799 -BL)1'99 Ts9 1'S9 Y9 -ued I'v'9 Kopued) 7°¢'9 nyz) 1'¢9 99 $T9 ¥'T9 €79 9 1'c9 I'r9

(ponunuoo) £ 3jqeL

pringer

A's



Reinforcement learning for road pricing: a review and future directions Page 53 of 58 65

Acknowledgements We would like to thank the editors and four anonymous reviewers for providing their
constructive feedback. Without their suggestions this manuscript would not have looked as in this final
version.

Author contributions O.V. did the literature search, material collection, initial draft organization and writ-
ing. O.V., A.S. and Y.V. worked on the conceptualization, analysis and presentation. A.S., Y.V. performed the
reviewing and editing.

Funding No funding was received for conducting this study.

Data Availability No datasets were generated or analysed during the current study.

Declarations

Conflict of interest The authors have no Conflict of interest to declare that are relevant to the content of this
article.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and
reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material.
You do not have permission under this licence to share adapted material derived from this article or parts of it.
The images or other third party material in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative
Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit h
ttp://creativecommons.org/licenses/by-nc-nd/4.0/.

References

Albrecht SV, Christianos F, Schéfer L (2024) Multi-Agent Reinforcement Learning: Foundations and Mod-
ern Approaches. MIT Press, Cambridge

Arnott R, Palma A, Lindsey R (1990) Economics of a bottleneck. J Urban Econ 27(1):111-130

Armott R, De Palma A, Lindsey RA (1993) structural model of peak-period congestion: A traffic bottleneck
with elastic demand. The American Economic Review, 161-179

Ahmed HU, Huang Y, Lu P (2021) A review of car-following models and modeling tools for human and
autonomous-ready driving behaviors in micro-simulation. Smart Cities 4(1):314-335

Arnott R (2007) Congestion tolling with agglomeration externalities. J Urban Econ 62(2):187-203

Busoniu L, Babuska R, Schutter B (2008) A comprehensive survey of multiagent reinforcement learning.
IEEE Transac Sys Man Cybernet Part C Appl Rev 38(2):156-172

Bellemare MG, Dabney W, Munos R (2017) A distributional perspective on reinforcement learning. In: Inter-
national Conference on Machine Learning, pp. 449-458. PMLR

Bono G, Dibangoye JS, Matignon L, Pereyron F, Simonin O (2019) Cooperative multi-agent policy gradient.
In: Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD
2018, Dublin, Ireland, September 10—14, 2018, Proceedings, Part I 18, pp. 459—476. Springer

Berto F, Hua C, Park J, Kim M, Kim H, Son J, Kim H, Kim J, Park J (2023) RL4CO: a unified reinforcement
learning for combinatorial optimization library. In: NeurIPS 2023 Workshop: New Frontiers in Graph
Learning. https://openreview.net/forum?id=YXSJxi8dOV

Boyles SD, Lownes NE, Unnikrishnan A (2023) Transportation Network Analysis vol. 1. University of
Texas, Austin. edition 0.91

Barth-Maron G, Hoffman MW, Budden D, Dabney W, Horgan D, Dhruva T, Muldal A, Heess N, Lillicrap T
(2018) Distributed distributional deterministic policy gradients. In: International Conference on Learn-
ing Representations

Bogyrbayeva A, Meraliyev M, Mustakhov T, Dauletbayev B (2024) Machine learning to solve vehicle rout-
ing problems: A survey. IEEE Trans Intell Transp Syst 25(6):4754—4772

Beckmann M, McGuire CB, Winsten CB (1956) Studies in the economics of transportation. Technical report,
Cowles Commission for Research in Economics, New Haven

@ Springer


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://openreview.net/forum?id=YXSJxi8dOV

65 Page 54 of 58 0. Vermeulen et al.

Bellemare MG, Naddaf Y, Veness J, Bowling M (2013) The arcade learning environment: An evaluation
platform for general agents. J Artif Intell Res 47:253-279

Bettini M, Prorok A, Moens V (2024) Benchmarl: Benchmarking multi-agent reinforcement learning. J Mach
Learn Res 25(217):1-10

Chen H, An B, Sharon G, Hanna J, Stone P, Miao C, Soh Y (2018) Dyetc: Dynamic electronic toll collection
for traffic congestion alleviation. In: Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 32

Claus C, Boutilier C (1998) The dynamics of reinforcement learning in cooperative multiagent systems.
AAAV/TAAI 746-752:2

Chiu Y-C, Bottom J, Mahut M, Paz A, Balakrishna R, Waller T, Hicks J (2011) Dynamic traffic assignment:
A primer. Transportation Research Circular (E-C153)

Cole R, Dodis Y, Roughgarden T (2003) Pricing network edges for heterogeneous selfish users. In: Proceed-
ings of the Thirty-fifth Annual ACM Symposium on Theory of Computing, pp. 521-530

Chiou S-W (2024) A knowledge-assisted reinforcement learning optimization for road network design prob-
lems under uncertainty. Knowl-Based Syst 292:111614

Como G, Maggistro R (2021) Distributed dynamic pricing of multiscale transportation networks. IEEE Trans
Autom Control 67(4):1625-1638

Chowdhury D, Santen L, Schadschneider A (2000) Statistical physics of vehicular traffic and some related
systems. Phys Rep 329(4-6):199-329

Chakravarty S, Tanveer MH, Voicu RC, Banerjee M (2024) Optimal-tolling using reinforcement learning. In:
SoutheastCon 2024, pp. 1317-1321. IEEE

Daganzo CF (1994) The cell transmission model: A dynamic representation of highway traffic consistent with
the hydrodynamic theory. Transport Res Part B Methodo 28(4):269-287

Daganzo CF (1995) The cell transmission model, part ii: network traffic. Transport Res Part B Methodol
29(2):79-93

Dulac-Arnold G, Levine N, Mankowitz DJ, Li J, Paduraru C, Gowal S, Hester T (2021) Challenges of real-
world reinforcement learning: definitions, benchmarks and analysis. Mach Learn 110(9):2419-2468

Du W, Ding S (2021) A survey on multi-agent deep reinforcement learning: from the perspective of chal-
lenges and applications. Artif Intell Rev 54(5):3215-3238

Diallo AO, Lozenguez G, Doniec A, Mandiau R (2021) Comparative evaluation of road traffic simulators
based on modeler’s specifications: An application to intermodal mobility behaviors. In: ICAART (1),
pp. 265-272

Dwivedi VP, Luu AT, Laurent T, Bengio Y, Bresson X (2022) Graph neural networks with learnable structural
and positional representations. In: International Conference on Learning Representations. https://openr
eview.net/forum?id=wTTjnvGphY]

De Palma A, Lindsey R (2011) Traffic congestion pricing methodologies and technologies. Transp Res Part
C Emerg Technol 19(6):1377-1399

Degris T, Pilarski PM, Sutton RS (2012) Model-free reinforcement learning with continuous action in prac-
tice. In: 2012 American Control Conference (ACC), pp. 2177-2182. IEEE

Dafermos SC, Sparrow FT (1969) The traffic assignment problem for a general network. J Research of the
National Bureau of Standards B 73(2):91-118

Degris T, White M, Sutton RS (2012) Off-policy actor-critic. Proceedings of the 29*h International Confer-
ence on Machine Learning

Ekstrom J (2014) Finding second-best toll locations and levels by relaxing the set of first-best feasible toll
vectors. European J Transport and Infrastructure Research 14(1)

Eliasson J (2017) Congestion pricing. In: The Routledge Handbook of Transport Economics. Routledge, New
York and London, pp 209-226

Foerster JN (2018) Deep multi-agent reinforcement learning. PhD thesis, University of Oxford

Farazi NP, Zou B, Ahamed T, Barua L (2021) Deep reinforcement learning in transportation research: A
review. Transport Res Interdiscipl Perspect 11:100425

Farias AV, Zhu S, Mardan A (2024) An overview of dynamic pricing toll roads in the united states: Pricing
algorithms, operation strategies, equity concerns, and funding mechanism. Case Stud Transport Pol
17:101226

Gronauer S, Diepold K (2022) Multi-agent deep reinforcement learning: a survey. Artif Intell Rev
55(2):895-943

Gupta JK, Egorov M, Kochenderfer M (2017) Cooperative multi-agent control using deep reinforcement
learning. In: Autonomous Agents and Multiagent Systems: AAMAS 2017 Workshops, Best Papers, Sdo
Paulo, Brazil, May 8-12, 2017, Revised Selected Papers 16, pp. 66—83. Springer

Genser A, Kouvelas A (2019) Dynamic congestion pricing for multi-region networks: A traffic equilibria
approach. In: 19th Swiss Transport Research Conference (STRC 2019). STRC

@ Springer


https://openreview.net/forum?id=wTTjnvGphYj
https://openreview.net/forum?id=wTTjnvGphYj

Reinforcement learning for road pricing: a review and future directions Page 55 of 58 65

Genser A, Kouvelas A (2022) Dynamic optimal congestion pricing in multi-region urban networks by appli-
cation of a multi-layer-neural network. Transp Res Part C Emerg TechnolTransp Res Part C Emerg
Technol 134:103485

Hoogendoorn SP, Bovy PH (2001) State-of-the-art of vehicular traffic flow modelling. Proc Inst Mech Eng
Part 1 J Sys Control Eng 215(4):283-303

Hernandez-Leal P, Kaisers M, Baarslag T, De Cote EM (2017) A survey of learning in multiagent environ-
ments: Dealing with non-stationarity. arXiv preprint arXiv:1707.09183

Hernandez-Leal P, Kartal B, Taylor ME (2019) A survey and critique of multiagent deep reinforcement learn-
ing. Auton Agent Multi-Agent Syst 33(6):750-797

He Q, Ma M, Li C, Liu W (2024) Learning and managing stochastic network traffic dynamics: an iterative
and interactive approach. Transportmet B Transp Dyn 12(1):2303050

Haarnoja T, Tang H, Abbeel P, Levine S (2017) Reinforcement learning with deep energy-based policies. In:
International Conference on Machine Learning, pp. 1352-1361. PMLR

Han 'Y, Wang M, Leclercq L (2023) Leveraging reinforcement learning for dynamic traffic control: A survey
and challenges for field implementation. Commun Transp Res 3:100104

Haydari A, Yilmaz Y (2020) Deep reinforcement learning for intelligent transportation systems: A survey.
IEEE Trans Intell Transp Syst 23:11-32

Haarnoja T, Zhou A, Abbeel P, Levine S (2018) Soft actor-critic: Off-policy maximum entropy deep rein-
forcement learning with a stochastic actor. In: International Conference on Machine Learning, pp.
1861-1870. PMLR

Joksimovic D, Bliemer MC Bovy PH (2005) Optimal toll design problem in dynamic traffic networks with
joint route and departure time choice. Transp Res Rec 1:61-72

Jin J, Zhu X, Wu B, Zhang J, Wang Y (2021) A dynamic and deadline-oriented road pricing mechanism for
urban traffic management Including results for Tsinghua Science and Technology journal abbrevia-
tion Do you want results only for Tsinghua Science and Technology journal abbreviate? Tsinghua Sci
Technol 27(1):91-102

Kakade SM (2001) A natural policy gradient. Advances in neural information processing systems 14

Kaelbling LP, Littman ML, Cassandra AR (1998) Planning and acting in partially observable stochastic
domains. Artif Intell 101(1-2):99-134

Kaelbling LP, Littman ML, Moore AW (1996) Reinforcement learning: A survey. J Artif Intell Res 4:237-285

Knight FH (1924) Some fallacies in the interpretation of social cost. Q J Econ 38(4):582-606

Knorr F (2013) Applicability and application of microscopic traffic simulations. PhD thesis, Universitatsbib-
liothek Duisburg-Essen

Kumar N, Raubal M (2021) Applications of deep learning in congestion detection, prediction and alleviation:
A survey. Transport Res Part C Emerg Technol 133:103432

Kohl N, Stone P (2004) Policy gradient reinforcement learning for fast quadrupedal locomotion. In: IEEE
International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, vol. 3, pp.
2619-2624. IEEE

Kok JR, Vlassis N (2006) Collaborative multiagent reinforcement learning by payoff propagation. J] Mach
Learn Res 7:1789-1828

Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: Interna-
tional Conference on Learning Representations. https://openreview.net/forum?id=SJU4ayY gl

Lopez PA, Behrisch M, Bieker-Walz L, Erdmann J, Flotterdd Y-P, Hilbrich R, Liicken L, Rummel J, Wagner
P, WieBner E (2018) Microscopic traffic simulation using sumo. In: 2018 21st International Conference
on Intelligent Transportation Systems (ITSC), pp. 2575-2582. IEEE

Liang C, Huang Z, Liu Y, Liu Z, Zheng G, Shi H, Du 'Y, Li F, Li Z (2022) Cblab: Scalable traffic simulation
with enriched data supporting. arXiv preprint arXiv:2210.00896

Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D (2015) Continuous control
with deep reinforcement learning. arXiv preprint arXiv:1509.02971

Lu J, Hong C, Wang R (2024) Magt-toll: A multi-agent reinforcement learning approach to dynamic traffic
congestion pricing. PLoS ONE 19(11):0313828

LiY (2017) Deep reinforcement learning: An overview. arXiv preprint arXiv:1701.07274

Littman ML (1994) Markov games as a framework for multi-agent reinforcement learning. In: Machine
Learning Proceedings 1994. Elsevier, Amsterdam, pp 157-163

Levine S, Kumar A, Tucker G, Fu J (2020) Offline reinforcement learning: Tutorial, review, and perspectives
on open problems. arXiv preprint atarXiv:2005.01643

Lombardi C, Picado-Santos L, Annaswamy AM (2021) Model-based dynamic toll pricing: an overview. Appl
Sci 11(11):4778

Lindsey R, Verhoef E (2001) Traffic congestion and congestion pricing. In: Handbook of Transport Systems
and Traffic Control. Emerald Group Publishing Limited, United Kingdom

@ Springer


http://arxiv.org/abs/1707.09183
https://openreview.net/forum?id=SJU4ayYgl
http://arxiv.org/abs/2210.00896
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1701.07274
http://arxiv.org/abs/2005.01643

65 Page 56 of 58 0. Vermeulen et al.

Lighthill MJ, Whitham GB (1955) On kinematic waves ii. a theory of traffic flow on long crowded roads.
Proc R Soc Lond A 229(1178):317-345

Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, Harley T, Silver D, Kavukcuoglu K (2016) Asynchro-
nous methods for deep reinforcement learning. In: International Conference on Machine Learning, pp.
1928-1937. PMLR

Maheshwari C, Kulkarni K, Pai D, Yang J, Wu M, Sastry S (2024) Congestion pricing for efficiency and
equity: Theory and applications to the san francisco bay area. arXiv preprint at arXiv:2401.16844

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland
AK, Ostrovski G et al (2015) Human-level control through deep reinforcement learning. Nature
518(7540):529-533

Mirzaei H, Sharon G, Boyles S, Givargis T, Stone P (2018) Enhanced delta-tolling: Traffic optimization via
policy gradient reinforcement learning. In: 2018 21st International Conference on Intelligent Transpor-
tation Systems (ITSC), pp. 47-52. IEEE

Mirzaei H, Sharon G, Boyles S, Givargis T, Stone P (2018) Link-based parameterized micro-tolling scheme
for optimal traffic management. In: Proceedings of the 17th International Conference on Autonomous
Agents and MultiAgent Systems, pp. 2013-2015

Mokbel M, Sakr M, Xiong L, Ziifle A, Almeida J, Anderson T, Aref W, Andrienko G, Andrienko N, Cao Y et
al (2024) Mobility data science: Perspectives and challenges. ACM Transac Sp Algorithm Sys 10:1-35

Marbach P, Tsitsiklis JN (2001) Simulation-based optimization of markov reward processes. IEEE Trans
Autom Control 46(2):191-209

Nash JF (1950) Equilibrium points in n-person games. Proc Natl Acad Sci 36(1):48-49

Nguyen J, Powers ST, Urquhart N, Farrenkopf T, Guckert M (2021) An overview of agent-based traffic simu-
lators. Transp Res interdiscip Perspect 12:100486

Nisha ASA, Rao NV, Venkatesh G, Murugan S, Meenakshi B et al (2024) Efficient congestion management
through iot-driven road user charging systems with reinforcement learning. In: 2024 Second Interna-
tional Conference on Intelligent Cyber Physical Systems and Internet of Things (ICoICI), pp. 431-436.
IEEE

Nohekhan A, Zahedian S, Sadabadi KF (2021) Investigating the impacts of i~66 inner beltway dynamic toll-
ing system. Transp Eng 4:100059

Padakandla S (2021) A survey of reinforcement learning algorithms for dynamically varying environments.
ACM Comput Surv (CSUR) 54(6):1-25

Pandey V, Boyles SD (2018) Multiagent reinforcement learning algorithm for distributed dynamic pricing of
managed lanes. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC),
pp. 2346-2351. IEEE

Pandey V, Boyles SD (2019) Comparing route choice models for managed lane networks with multiple
entrances and exits. Transp Res Rec 2673(10):381-393

Paccagnan D, Chandan R, Ferguson BL, Marden JR (2021) Optimal taxes in atomic congestion games. ACM
Transac Econ Comput (TEAC) 9(3):1-33

Prieto Curiel R, Gonzalez Ramirez H, Quifiones Dominguez M, Orjuela Mendoza JP (2021) A paradox of
traffic and extra cars in a city as a collective behaviour. R Soc Open Sci 8(6):201808

Pigou AC (1924) The Economics of Welfare. Macmillan, London

Patterson A, Neumann S, White M, White A (2024) Empirical design in reinforcement learning. J Mach
Learn Res 25(318):1-63

Peters J, Schaal S (2006) Policy gradient methods for robotics. In: 2006 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 2219-2225. IEEE

Pandey V, Wang E, Boyles SD (2020) Deep reinforcement learning algorithm for dynamic pricing of express
lanes with multiple access locations. Transp Res Part C Emerg Technol 119:102715

Qiu W, Chen H, An B (2019) Dynamic electronic toll collection via multi-agent deep reinforcement learning
with edge-based graph convolutional networks. In: IJCAI pp. 4568-4574

Qin ZT, Zhu H, Ye J (2022) Reinforcement learning for ridesharing: an extended survey. Transp Res Part C
Emerg Technol 144:103852

Ramos GDO, Silva BC, Radulescu R, Bazzan AL, Now¢ A (2020) Toll-based reinforcement learning for
efficient equilibria in route choice. Knowl Eng Rev 35:¢8

Ramos GdO, Silva BC, Radulescu R, Bazzan AL (2018) Learning system-efficient equilibria in route choice
using tolls. In: Proceedings of the Adaptive Learning Agents Workshop, vol. 2018

Richards PI (1956) Shock waves on the highway. Oper Res 4(1):42-51

Ramos GdO, Radulescu R, Nowé A, Tavares AR (2020) Toll-based learning for minimising congestion
under heterogeneous preferences. In: Proceedings of the 19th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2020), pp. 1098-1106. IFAAMAS

Sutton RS, Barto AG (2018) Reinforcement Learning: an Introduction. MIT Press, Cambridge

@ Springer


http://arxiv.org/abs/2401.16844

Reinforcement learning for road pricing: a review and future directions Page 57 of 58 65

Saharan S, Bawa S, Kumar N (2020) Dynamic pricing techniques for intelligent transportation system in
smart cities: a systematic review. Comput Commun 150:603-625

Schmidt LM, Brosig J, Plinge A, Eskofier BM, Mutschler C (2022) An introduction to multi-agent reinforce-
ment learning and review of its application to autonomous mobility. In: 2022 IEEE 25th International
Conference on Intelligent Transportation Systems (ITSC), pp. 1342-1349. IEEE

Storani F, Pace R, Bruno F, Fiori C (2021) Analysis and comparison of traffic flow models: a new hybrid
traffic flow model vs benchmark models. Eur Transp Res Rev 13(1):1-16

Seo T (2020) Trial-and-error congestion pricing scheme for morning commute problem with day-to-day
dynamics. Transp Res Proced 47:561-568

Sharon G, Hanna J, Rambha T, Albert M, Stone P, Boyles SD (2016) Delta-tolling: Adaptive tolling for opti-
mizing traffic throughput. In: ATT@ IJCAI

Sharon G, Hanna JP, Rambha T, Levin MW, Albert M, Boyles SD, Stone P (2017) Real-time adaptive toll-
ing scheme for optimized social welfare in traffic networks. In: Proceedings of the 16th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS-2017)

Singh S, Kearns MJ, Mansour Y (2000) Nash convergence of gradient dynamics in general-sum games. In:
UAL pp. 541-548

Shoham Y, Leyton-Brown K (2008) Multiagent Sys Algorithmic, Game-theoretic, and Logical Foundations.
Cambridge University Press, Cambridge

Silver D, Lever G, Heess N, Degris T, Wierstra D, Riedmiller M (2014) Deterministic policy gradient algo-
rithms. In: International Conference on Machine Learning, pp. 387-395. PMLR

Sharon G, Levin MW, Hanna JP, Rambha T, Boyles SD, Stone P (2017) Network-wide adaptive tolling for
connected and automated vehicles. Transp Res Part C Emerg Technol 84:142—-157

Sutton RS, McAllester D, Singh S, Mansour Y (1999) Policy gradient methods for reinforcement learning
with function approximation. Adv Neural Inf Proc Syst 12

Schuster P, Sigmund K (1983) Replicator dynamics. J Theor Biol 100(3):533-538

Sato K, Seo T, Fuse T (2021) A reinforcement learning-based dynamic congestion pricing method for the
morning commute problems. Transp Res Proced 52:347-355

Sato K, Seo T, Fuse T (2022) Dynamic network congestion pricing based on deep reinforcement learning.
arXiv preprint arXiv:2206.12188

Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017) Proximal policy optimization algorithms.
arXiv preprint at arXiv:1707.06347

Tan M (1993) Multi-agent reinforcement learning: Independent vs. cooperative agents. In: Proceedings of the
Tenth International Conference on Machine Learning, pp. 330-337

Tavares AR, Bazzan AL (2014) An agent-based approach for road pricing: system-level performance and
implications for drivers. J Braz Comput Soc 20(1):1-15

Terry J, Black B, Grammel N, Jayakumar M, Hari A, Sullivan R, Santos LS, Dieffendahl C, Horsch C, Perez-
Vicente R et al (2021) Pettingzoo: Gym for multi-agent reinforcement learning. Adv Neural Inf Process
Syst 34:15032-15043

Tampere CM, Corthout R, Cattrysse D, Immers LH (2011) A generic class of first order node models for
dynamic macroscopic simulation of traffic flows. Transport Res Part B Methodol 45(1):289-309

Todorov E, Erez T, Tassa Y (2012) Mujoco: A physics engine for model-based control. In: 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 5026-5033. IEEE

Treiber M, Hennecke A, Helbing D (2000) Congested traffic states in empirical observations and microscopic
simulations. Phys Rev E 62:1805-1824. https://doi.org/10.1103/PhysRevE.62.1805

Towers M, Kwiatkowski A, Terry J, Balis JU, De Cola G, Deleu T, Gouldo M, Kallinteris A, Krimmel M,
KG A et al (2024) Gymnasium: A standard interface for reinforcement learning environments. arXiv
preprint arXiv:2407.17032

Tsekeris T, VoB3 S (2009) Design and evaluation of road pricing: state-of-the-art and methodological advances.
Netnom Econ Res Electron Netw 10:5-52

United States Bureau of Public Roads (1964) Traffic Assignment Manual for Application with a Large, High
Speed Computer vol. 2. US Department of Commerce, Bureau of Public Roads, Office of Planning,
Urban Planning Division, Washington D.C

Verhoef ET (1999) Time, speeds, flows and densities in static models of road traffic congestion and conges-
tion pricing. Reg Sci Urban Econ 29(3):341-369

Verhoef ET (2000) Second-best congestion pricing in general networks-algorithms for finding second-best
optimal toll levels and toll points. Technical report, Tinbergen Institute Discussion Paper

Verhoef ET (2002) Second-best congestion pricing in general static transportation networks with elastic
demands. Reg Sci Urban Econ 32(3):281-310

Vickrey WS (1963) Pricing in urban and suburban transport. Am Econ Rev 53(2):452-465

Vickrey WS (1969) Congestion theory and transport investment. Am Econ Rev 59(2):251-260

@ Springer


http://arxiv.org/abs/2206.12188
http://arxiv.org/abs/1707.06347
https://doi.org/10.1103/PhysRevE.62.1805
http://arxiv.org/abs/2407.17032

65 Page 58 of 58 0. Vermeulen et al.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention
is all you need. Adv Neural Inf Proc Syst 30

Wageningen-Kessels F, Lint H, Vuik K, Hoogendoorn S (2015) Genealogy of traffic flow models. Euro J
Transp Logist 4(4):445-473

Wardrop JG (1952) Road paper some theoretical aspects of road traffic research. Proc Inst Civ Eng
1(3):325-362

Watkins CJCH (1989) Learning from delayed rewards. PhD thesis, King’s College, Cambridge United
Kingdom

Wong A, Bick T, Kononova AV, Plaat A (2022) Deep multiagent reinforcement learning: Challenges and
directions. Artif Intell Rev 56:1-34

Watkins CJ, Dayan P (1992) Q-learning Machine learning 8(3):279-292

Williams RJ (1992) Simple statistical gradient-following algorithms for connectionist reinforcement learn-
ing. Mach Learn 8(3):229-256

Wang Y, Jin H, Zheng G (2022) Ctrl: Cooperative traffic tolling via reinforcement learning. In: Proceedings
of the 31st ACM International Conference on Information & Knowledge Management, pp. 3545-3554

Wen M, Kuba J, Lin R, Zhang W, Wen Y, Wang J, Yang Y (2022) Multi-agent reinforcement learning is a
sequence modeling problem. Adv Neural Inf Process Syst 35:16509-16521

Wei H, Zheng G, Gayah V, Li Z (2021) Recent advances in reinforcement learning for traffic signal control:
a survey of models and evaluation. ACM SIGKDD Explorations Newsl 22(2):12-18

Yan Y, Chow AH, Ho CP, Kuo Y-H, Wu Q, Ying C (2022) Reinforcement learning for logistics and supply
chain management: Methodologies, state of the art, and future opportunities. Transp Res Part E Logist
Transp Rev 162:102712

Yang H, Huang H-J (1998) Principle of marginal-cost pricing: how does it work in a general road network?
Transp Res Part A Policy Pract 32(1):45-54

Ye G, Song J, Feng M, Zhu G, Shen P, Zhang L, Shah SAA, Bennamoun M (2023) Position and structure-
aware graph learning. Neurocomputing 556:126581

Yuan L, Zhang Z, Li L, Guan C, Yu Y (2023) A survey of progress on cooperative multi-agent reinforcement
learning in open environment. arXiv preprint at arXiv:2312.01058

Zhang H, Feng S, Liu C, Ding Y, Zhu Y, Zhou Z, Zhang W, Yu Y, Jin H, Li Z (2019) Cityflow: A multi-agent
reinforcement learning environment for large scale city traffic scenario. In: The World Wide Web Con-
ference, pp. 3620-3624

Zhu F, Ukkusuri SV (2015) A reinforcement learning approach for distance-based dynamic tolling in the
stochastic network environment. J Adv Transp 49(2):247-266

Zhang X, Wang W, Chen J (2023) A priori lane selection strategy for reinforcement learning of dynamic
expressway tolling. In: 2023 International Conference on Pattern Recognition, Machine Vision and
Intelligent Algorithms (PRMVIA), pp. 143-154. IEEE

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer


http://arxiv.org/abs/2312.01058

	﻿Reinforcement learning for road pricing: a review and future directions
	﻿Abstract
	﻿1﻿ ﻿Introduction
	﻿﻿1.1﻿ ﻿Recent related surveys
	﻿1.2﻿ ﻿Contribution of this survey
	﻿1.3﻿ ﻿Methodology and structure of the survey

	﻿﻿2﻿ ﻿Modeling traffic
	﻿2.1﻿ ﻿Traffic model - network
	﻿2.2﻿ ﻿Traffic model - vehicles - state and demand
	﻿2.3﻿ ﻿Link and vehicle properties
	﻿2.4﻿ ﻿Cost function and route and departure time choice
	﻿2.5﻿ ﻿Network loading
	﻿2.6﻿ ﻿Objectives and equilibria

	﻿﻿3﻿ ﻿Road pricing
	﻿3.1﻿ ﻿Why road pricing?
	﻿﻿3.2﻿ ﻿Modeling road pricing
	﻿3.3﻿ ﻿Toll agents

	﻿﻿4﻿ ﻿Reinforcement learning
	﻿﻿5﻿ ﻿Problem formulation and research challenges
	﻿5.1﻿ ﻿The road pricing problem in RL terminology
	﻿5.2﻿ ﻿Research challenges

	﻿﻿6﻿ ﻿Road pricing approaches using reinforcement learning
	﻿6.1﻿ ﻿Policy gradient for enhanced ∆-Tolling in Road Networks
	﻿﻿6.1.1﻿ ﻿Enhanced ∆-Tolling with Finite Difference Policy Gradient


	﻿6.2﻿ ﻿Actor-critic dynamic toll collection for road networks
	﻿﻿6.2.1﻿ ﻿Dynamic electronic toll collection - PG-﻿￼﻿﻿
	﻿﻿6.2.2﻿ ﻿Dynamic electronic toll collection - MARL
	﻿﻿6.2.3﻿ ﻿Dynamic and deadline oriented road pricing mechanism
	﻿﻿6.2.4﻿ ﻿Toll pricing with attention network and soft actor-critic
	﻿﻿6.2.5﻿ ﻿Dynamic toll collection using transformers and graph neural networks
	﻿﻿6.2.6﻿ ﻿Dynamic toll pricing in regions

	﻿6.3﻿ ﻿Value based dynamic toll collection for tolled lanes
	﻿﻿6.3.1﻿ ﻿Distance based tolling with R-MART
	﻿﻿6.3.2﻿ ﻿MARL for distributed dynamic pricing of managed lanes

	﻿6.4﻿ ﻿Actor-critic dynamic toll collection for tolled lanes
	﻿﻿6.4.1﻿ ﻿Deep RL for dynamic pricing of express lanes
	﻿﻿6.4.2﻿ ﻿A priori link selection and dynamic tolling of expressways

	﻿6.5﻿ ﻿Dynamic tolling to manage departure time choice
	﻿﻿6.5.1﻿ ﻿Dynamic congestion pricing for departure time choice
	﻿﻿6.5.2﻿ ﻿Pricing for departure time choice with DDPG

	﻿6.6﻿ ﻿Value based dynamic tolling including vehicles as learning agents
	﻿﻿6.6.1﻿ ﻿Multi agent road pricing with learning vehicles and toll agents
	﻿﻿6.6.2﻿ ﻿Deep multi agent road pricing with learning vehicles and toll agent

	﻿6.7﻿ ﻿Value based marginal cost tolling
	﻿﻿6.7.1﻿ ﻿Multi agent reinforcement learning - only vehicles
	﻿﻿6.7.2﻿ ﻿Multi agent reinforcement learning - heterogeneous agents

	﻿6.8﻿ ﻿Other works
	﻿6.9﻿ ﻿An assessment of the potential of RL for road pricing
	﻿﻿7﻿ ﻿Challenges and future research directions
	﻿7.1﻿ ﻿How identified challenges are addressed
	﻿7.1.1﻿ ﻿Additional findings


	﻿7.2﻿ ﻿Future research directions
	﻿﻿8﻿ ﻿Conclusions
	﻿﻿Appendix A
	﻿﻿A.1 Reinforcement Learning
	﻿﻿A. 2 Solution methods to find the policy
	﻿A.2.1 Value based methods
	﻿A.2.2 Policy based methods
	﻿A.2.3 Actor-critic methods
	﻿A.2.4 Issues and challenges


	﻿﻿A.3 Multi agent reinforcement learning
	﻿A.4 Solution methods
	﻿A.4.1 Decentralized training decentralized execution (DTDE)
	﻿A.4.2 Centralized training centralized execution (CTCE)
	﻿A.4.3 Centralized training decentralized execution (CTDE)
	﻿A.4.4 Issues and challenges

	﻿﻿A.5 Deep reinforcement learning
	﻿A.5.1 Value based algorithms
	﻿﻿A.5.2 Policy based and actor-critic algorithms
	﻿A.5.3 Multiple actor/learner for value and policy based algorithms
	﻿A.5.4 Multi agent reinforcement learning

	﻿Appendix B
	﻿References


