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ABSTRACT
There is a growing need to associate a variety of metadata with
the underlying data, but a simple, elegant approach to uniformly
model and query both the data and the metadata has been elusive.
In this paper, we argue that (1) the relational model augmented with
queries as data values is a natural way to uniformly model data, ar-
bitrary metadata and their associations, and (2) relational queries
with a join mechanism augmented to permit matching of query re-
sult relations, instead of only atomic values, is an elegantway to
uniformly query across data and metadata. We describe the archi-
tecture of a system we have prototyped for this purpose, demon-
strate the generality of our approach and evaluate the performance
of the system, in comparison with previous proposals for metadata
management.

Categories and Subject Descriptors:
H.2.1 [Database Management]: Logical Design – Data Models

General Terms: Management.

Keywords: Queries as data, metadata management, intensional as-
sociations, annotations.

1. INTRODUCTION
In recent years we have witnessed a tremendous proliferation of

databases in many fields of endeavor, ranging from corporateen-
vironments and scientific domains to supporting a diverse set of
applications on the web. These databases are becoming increas-
ingly complex, both in their internal structure (e.g., thousands of
tables) and in their interactions with other databases and applica-
tions (e.g., mediators and workflows). There is a consequentneed
for understanding, maintaining, querying, integrating and evolving
these databases. In successfully performing these tasks, metadata
plays an important role. Metadata is data about data, a secondary
piece of information that is separate in some way from the primary
piece of information to which it refers. Metadata examples include
schema, integrity constraints, comments about the data [4], ontolo-
gies [1], quality parameters [28, 16], annotations [5, 12],prove-
nance [24], and security policies [3].

Metadata is used in many different fields. In corporate environ-
ments, databases deployed at the core of important businessoper-
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Kind Ref. Method Used

Annotations [12]
Atomic value annotations attached to a block of
values within a tuple. They accompany the values
as retrieved. Relational algebra query language.

Provenance [5]
Atomic data values carry their provenance, which
propagates with them as they are retrieved. Query
language supports predicates on provenance.

Quality
Parameters

[16]
Data values are associated with quality parame-
ters (accuracy, freshness, etc.). SQL is extended
to retrieve data using these parameters.

Schema &
Mapping
Information

[24]
[14]
[29]

Explicit modeling of schema and mapping infor-
mation, and associations of it with portions of the
data. SQL extension to retrieve data and meta-
data that satisfy certain metadata properties.

Security [3]
Credential-based access control. System reads
complex security profiles and returns data results
accordingly.

Super-
imposed
Information

[15]

Loosely-coupled model of information elements,
marks and links used to represent superimposed
information. It has no specific schema, but is in
relational model and can be queried using SQL.

Time [6]
Creation and modification time is recorded with
the data and used in query answering. Query lan-
guage supports predicates on time values.

Table 1: Metadata management proposals

ations may contain erroneous, inaccurate, out-of-date, orincom-
plete data with a significant impact on query results [8]. In such
applications, data can be tagged with quality parameters tocom-
municate suitability, accuracy, freshness or redundancy [27, 28],
and schema structures can be annotated with textual description
to communicate their semantics. In scientific domains wheredata
may be collected from various sources, cleansed, integrated and
processed to produce new forms of data enhanced with new analy-
sis results [19], provenance can be provided as metadata in the form
of annotations [4] and schema and mapping information can be
stored in special structures to allow users to apply their own judg-
ment to assess credibility of query results [24]. In heterogeneous
environments where different sources may use different structures
to represent the same real world entity, or the same representation to
model different concepts, metadata can clarify semantics,prevent
misinterpretations or misuses of data, achieve interoperability [10]
and allow the retrieval of the data that is best suited to the task at
hand [21]. In the Internet domain, superimposed information, i.e.,
data “placed over” existing information sources, is used tohelp or-
ganize, access, connect and reuse information elements in those
sources [15]. Similarly, security related policies can be associated
to the data to control access in various environments [3].



1.1 Metadata Management Approaches
Over the years, numerous proposals have been made by re-

searchers for augmenting the data model and the query capabilities
of a database in order to facilitate metadata management. Table 1
provides a list of such proposals. While the list is by no means ex-
haustive, it provides a good sample of the kinds of metadata that
have been considered of interest and have been studied. It also
characterizes the way the problem has been approached. Based on
these approaches one can observe the great variety of metadata, the
different structures, the kind of data associated with metadata, and
the way metadata has been used in queries. Some of this metadata
is described by single atomic values, e.g., the creation time of an
element in the database [6]. Others have a more complex structure,
like the schema mapping information [24] or security [3]. Further-
more, metadata can be associated either to individual data values
[5, 16, 6] or to a group of values, such as a subset of the attributes
(i.e., a block) of a tuple [12] or a complex XML element [3].

A common denominator of the approaches in Table 1 is the use
of metadata in querying. Some use it to restrict query results, which
may [6, 16] or may not [5] include metadata alongside the actual
data results. Others query and retrieve metadata independently of
the data to which it is associated [15].

It is also worth observing that each entry in Table 1 is tailored
to specific kinds of metadata, and is not directly applicableto other
kinds, at least not without some major modifications. Past attempts
at building generic metadata stores (e.g., [13, 2]) have employed
complex modeling tools for this purpose: [13] explicitly repre-
sented the various artifacts using Telos [17], and [2] employed
data repositories (intended for shared databases of engineering ar-
tifacts). A simple, elegant approach to uniformly model andquery
data, arbitrary metadata and their association has been elusive.

Another observation from Table 1 is that metadata has to be ex-
plicitly associated with each data item it refers to. There are, how-
ever, practical scenarios in which anintensionalassociation may
be more appropriate. For example, in an application that contains
reviews about restaurants [4], one may need to describe a property
that holds for all the restaurants in New York. Using previous pro-
posals this information would have had to be associated explicitly
to every New York restaurant in the database. Furthermore, future
tuples cannot be accommodated without explicit association. For
instance, if ten new restaurants are opened in New York, the prop-
erty that holds for all the restaurants in New York should also hold
for them. However, this cannot be achieved unless the property
gets explicitly associated to these ten restaurants. An alternative
approach (which we advocate) is to use an intensional description
of the restaurants (data) that have that property (metadata), in the
same way virtual views use queries over base tables to describe
their instances, and future tuples that are inserted or deleted from
the base tables, are automatically included or removed fromthe
instances of the views.

1.2 Our Approach
In this work, we describe a study that aims to accommodate in

one simple framework the different kinds of metadata, the differ-
ent structures, the different ways that metadata is associated with
data and the different ways in which it is used in queries. We argue
that in order to achieve this we need a framework that is simple
and abstracted from the specifics of each kind of metadata. Having
observed that the operations one needs to perform on metadata are
similar to those people do with data, we propose the use of standard
data management techniques for metadata, so that both data and
metadata can be managed in one single framework. We advocate
that the relational model is adequate for such a purpose. Metadata

with complex structures can easily be modeled through relations
and attributes. These relations have no special semantics,thus, the
same piece of information can be viewed either as data or as meta-
data. It can also be queried using a relational query language, even
independently of whether or not it is associated to some data.

Our philosophy is that although, at the conceptual level, there
may be a distinction between data and metadata, at the database
level, for the purpose of management, everything is represented as
a relation. This approach is not different from the one followed by
the relational model, where at the conceptual level there may be a
distinction between entities and relationships, but at thedatabase
level, everything is represented through relations.

The main mechanism used in the relational model to associate
data in different relations is the join on one or more attributes.
If data and metadata have been modeled as relations, then the
same mechanism can be used to describe the association between
data and metadata. Unfortunately, the relational join operation has
two main limitations that make it inadequate for this intended use:
(i) The association is always at the tuple level, i.e., it is not possible
to associate a metadata tuple with only a subset of attributes of an-
other tuple in a different table, since there is no way to specify the
attributes that the metadata refers to; (ii) It requires explicit associ-
ation between the tuples through the join attributes, as previously
mentioned in the New York restaurants example. To cope with
these issues, we propose the use of queries as values in the rela-
tional tables. In particular, we show how attributes of type“query”,
can achieve the required functionality.

Using queries as data values is not entirely new. Relational
DBMSs already store in the catalog tables the definition queries of
their views. In this case, however, queries are considered schema
information and despite the fact that they can be queried using SQL,
they are not considered part of the instance data. Our proposal
raises such metadata to the level of data, and provides a unified
mechanism for modeling and querying across data and metadata.
Apart from the system catalog tables, queries as values havebeen
proposed in INGRES [23], with a similar functionality adopted by
Oracle [11]. They have also been studied in the context of relational
algebra [18], and the Meta-SQL system [9]. Here we show how this
idea can be used in the service of metadata management. A key dif-
ference is that previous approaches require the existence of aneval

operator that evaluates the queries stored as values at run time, pos-
sibly resulting in nested relations, or in some cases the computation
of the outer-union of these results. In contrast, we only need a new
kind of predicate that makes use ofeval, leading to a more efficient
implementation. Our use of queries as values is similar to the role
of RDF resource descriptions [26], but our approach is much more
generic, since we can use as a resource description the full power
of SQL queries.

Our contributions can be summarized as follows:

1. We elevate metadata to first class citizens of the database
and the query language, without requiring any special se-
mantics. The approach allows metadata management with-
out any modification of the semantics of the relational model
and SQL, and without having to alter existing tables, since
we use stored queries to refer to the data which the metadata
entries describe.

2. We extend the traditional join mechanism of the relational
model to support joins that are based not on single values,
but on a relation specified by a query stored in one of the
attributes. This allows intensional specification of the data
to which the metadata is associated. Furthermore, it allows
metadata tuples to be associated to not just whole tuples, but
also to portions of them.



Customers
Name Type Loc PhoneLine CircuitID
AFLAC bus NJ 4078417332245-6983
J. Lu res NY 2019394460245-7363
H. Ford res NJ 2159537607245-7564
AMEX bus NY 3178763540343-5002
NJC bus NJ 9730918327981-5002
BCT bus NJ 9734858504273-6019
... ... ... ... ...

Provenance
Rf1 Source IP Protocol
q1 NJDB 147.52.7.8 http
q2 3State 148.62.1.11ftp
... ... ... ...

q1: select Name,Type,PhoneLine
from Customers where Loc=’NJ’

q2: select Loc,PhoneLine,CircuitID
from Customers where Type=’business’

Permissions
Rf2 Users
q11 Administrators
q12 Guests
... ...

q11: select * from Provenance

where IP LIKE ’147.%’
q12: select Name from Customers

where Loc=’NY’

XJ
Qc Qt
qC1 qT1

qC2 qT2

qC3 qT3

... ...

Technicians
Name Contact Company
W. Farkas 4804978353AT&T
S. Gilbert 3178757627Verizon
M. Henry 8187167852AT&T
C. Urs 7739735713AT&T
Y. James 7344676191CISCO

qC1. select CircuitID from Customers where Type=’residence’
qT1. select * from Technicians where Company=’CISCO’
qC2. select PhoneLine,CircuitID from Customers where Type=’business’
qT2. select * from Technicians where Company=’Verizon’
qC3. select PhoneLine from Customers
qT3. select * from Technicians where Company=’AT&T’

Figure 1: A database with metadata information stored in regular tables as data.

3. We explore alternative implementation mechanisms that al-
low the use of queries as data values in modern relational
databases and also allow joins based on such values. We
present pure rewriting-based strategies, as well as techniques
that can effectively use and update indexes for this purpose.

4. We describe the architecture of the Metadata Management
System (MMS) we have prototyped. We experimentally
evaluate the performance of MMS, and compare it with pre-
vious proposals for metadata management. Our results vali-
date the generality and practicality of our uniform approach
to metadata management.

The structure of the paper is as follows. Section 2 provides arun-
ning example that identifies the issues and illustrates our solution.
Section 3 defines the semantics of query expressions as data values
in relational tables, and their use in query conditions. Section 4
describes how attributes of this type can be implemented using ex-
isting relational database technology. Finally, Section 5presents
experimental results to validate our methodology.

2. ILLUSTRATIVE EXAMPLE
We describe in this section a realistic example that illustrates the

need for a uniform way of managing different kinds of metadata
and their associations to data, and also illustrates our solution.

EXAMPLE 2.1. Consider a communications company database
with the tableCustomers shown in Figure 1. The table contains
information about the phone lines (PhoneLine) of the customers
(Name), their location (Loc), whether a customer is a business or
a residence (Type) and the circuit (CircuitID) used by the phone
line. The contents of the table are generated by integratingdata
from a number of physically distributed sources. When a mistake
is detected in the table, it is important to know its origin inor-
der to correct it. To make this information available to the user,
the data in theCustomers table needs to be annotated with its
provenance information. This includes the origin databasename
(Source), its IP address (IP), and the communication protocol
used to access it (Protocol). One way to achieve this is to al-
ter the tableCustomers by adding three new columns for each of
its attributes [4]. Such a solution may affect the way existing appli-
cations use the table, may degrade performance, or may not even
be implementable due to lack of authorization for such a change.

An alternative solution is to to store the provenance informa-
tion in a separate table (Provenance) as illustrated in Figure 1.

ColumnRf1 can be used to specify the relationship between the
specific tuple and the data it annotates. It may containName values
assuming thatName is the key inCustomers. For instance, tuple
[BCT, NJDB, 147.52.7.8, http] in Provenance would indicate that
theBCT customer data tuple was obtained from theNJDB source.

This modeling approach has two main drawbacks. First, it has
a lot of information repetition. Assume that it has been asserted
that all the New Jersey customers originate from the same data
source. To record that, a tuple like the one just mentioned will
have to be repeated in tableProvenance for every New Jersey
customer. The second drawback is that this mechanism cannotbe
used to model the fact that aProvenance tuple may not refer to
the wholeCustomers tuple but only to a subset of its attributes.

What we propose is to allow queries to be used as values in the
table columns. In particular, to have some columns recording query
expressions used to intensionally describe data a metadatatuple is
associated to. To find whether a particular data value is associated
with a given (metadata) tuple, one only needs to check if the data
value is part of the relation described by the query expression.

EXAMPLE 2.2. In the example database of Figure 1, column
Rf1 of tableProvenance contains queries instead of atomic val-
ues. The first tuple with queryq1 in columnRf1 intensionally
describes that the provenance of all the customers with location
’NJ’ is the NJDB data source. Furthermore, through the attributes
of its select clause, it specifies that this is true only for attributes
Name, Type andPhoneLine. It states nothing about attributesLoc
and CircuitID. In a similar fashion, the second tuple specifies
that data source ’3State’ is the origin of theLoc, PhoneLine and
CircuitID values of all the businessCustomers.

EXAMPLE 2.3. The data in tableCustomers often needs to be
verified for their consistency. This is common practice in large
database applications where errors appear frequently [5].In the
current application, this is done by a number of techniciansfrom
various companies. Not all technicians are qualified to verify the
correctness of every data element in theCustomers table. There
are certain rules that govern this qualification. For example, any
CISCO technician can verify that the circuit id recorded in the data-
base for any residential customer is correct, anyVerizon techni-
cian can verify the correctness of the recorded phone numberor
circuit id (or their association) of any business customer,and any
AT&T technician can verify the correctness of the phone number of



any customer. The owner of the database would like to annotate the
data in theCustomers table with the technicians that are eligible
for performing the verification task, so that given some dataval-
ues, it is easy to find who can be called to perform the verification.
To do that, the technician information is recorded in a new data-
base tableTechnicians. The relationship between technicians
and customers is modeled through a new tableXJ with columns
Qc and Qt, both containing queries as values. Their contents are
presented in Figure 1. The tuples in the tableXJ model these rules.

With the proposed mechanism, one can easily introduce new
metadata on top of other existing metadata. It is only a matter of
creation of a new table and of specifying the right queries asval-
ues in one of its columns. Also, different metadata tuples inthe
same metadata table can refer to different data or metadata tables.
These are important features since the distinction betweendata and
metadata is usually blurred. The same piece of information may be
viewed as data by one application and as metadata by another.

EXAMPLE 2.4. Suppose that a set of security policies need to
be specified for some of the data. For simplicity, assume thatthese
policies include only the group of users who can access the relevant
data. The system administrator would like to annotate both the
Customers and Provenance tables with the access permissions
information. To achieve it, she creates a newPermissions table
as illustrated in Figure 1. The first tuple of that table, through query
q11 stored as a value in columnRf2, indicates that records in the
Provenance table whose IP is in the 147.* domain can be accessed
only by an administrator. The second tuple, through queryq12,
indicates that theName field in theCustomers table with location
’NY’ can be accessed by a guest user.

It is also important to note that through the proposed modeling
of metadata information as data, and of the associations between
tables through attributes with queries as values, metadatacan have
any complex structure. In particular, a piece of metadata informa-
tion may have multiple columns with different types.

3. QUERIES AS DATA VALUES
This section formally defines the semantics and the use of query

expressions as data values and the operators on them.

3.1 Query-Types
The adopted type system is the one of the relational model ex-

tended with a new user defined atomic type calledQ-type.Q-types
provide the means to store queries as values in relational tables,
in a fashion similar to INGRES [23] or Meta-SQL [9]. User de-
fined types are used the same way any other primitive atomic type
is used. The ability to define and use such types is part of the SQL
Standard and is currently supported by most commercial database
management systems. A value of typeQ-type, referred to asQ-
value, is a relational query expression.

To be able to dynamically execute queries stored as values, we
assume the existence of a functioneval whose role is to evaluate
a query expression that is provided to it as argument. However,
in contrast to other approaches that use query expressions as data
values [23, 18], we donot propose to extend relational algebra to
include this function as an operator. Such an extension would have
two major implications. The first is that it would have required the
use of a nested relational model, instead of the simpler flat (first
normal form) relational model. If, for instance,eval was part of
the extended relational algebra, applying it on aQ-type column
would have returned a relation in which the contents of that col-
umn would have been relations, i.e., the result would have been a
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Figure 2: Q-type joins

non-first normal form relation. The second disadvantage is that it
would have created results with an unspecified schema. Different
Q-values have query expressions that can return different numbers
and types of attributes. Evaluating theQ-type column would have
resulted in multiple non union-compatible relations.

EXAMPLE 3.1. Consider the queryselect * from Provenance

applied on the database instance of Figure 1. If the Query col-
umnRf1 is evaluated prior to retrieval, the result will be a relation
with the last 3 attributes ofProvenance table and the attributes re-
turned by the execution of the query in columnRf1. Queriesq1 and
q2 are not union-compatible (they have differentselect clauses).
Due to this, in the execution of queryselect * from Provenance,
if an unnest operation is applied on the returned result relation of
queriesq1 and q2, the final result will have tuples with different
number and kind of attributes, hence, it would not be a relation.

The onlyadditional functionality that we need is a new kind of
predicate (i.e., conditional expression) that makes use oftheeval

function. Such a predicate can be a parameter of the standardop-
erators of relational algebra, including selection and join, yielding
functionality that can effectively useQ-values for associating meta-
data tables with data (or other metadata) tables, as described next.

The functionality described here can also be achieved in the
nested relational model, where an entire relation is storedas a value
of an attribute. That model is much more powerful but, unfortu-
nately, its richer functionality comes with a much higher cost. Our
goal is to achieve what we want with minimal cost. We chose to
implement our solution to the relational model that currently dom-
inates the commercial DBMS world.

3.2 Selections on Q-values
Although for storage and retrieval purposesQ-type column con-

tents are viewed as atomic types, for comparison purposes, we
would like to viewQ-values as relations. Since aQ-value is noth-
ing more than an intensional description of a virtual relation, the
functionality needed is the one that allows checking whether cer-
tain values exist in the relation described by aQ-value. If they do,
it is said that theQ-valuereferencesthese values.

DEFINITION 3.2. For a relation R with a Q-type columnQ,
let t be a tuple of that relation andq the value of that tuple on
columnQ. Assume thatA is the set of attributes of the result rela-
tion eval(q). If v1, . . . , vn are atomic values andA1, . . . , An are
attribute names, expressionR.Q[A1, . . . , An]

.
=[v1, . . . , vn] eval-

uates to true forR.Q=q if the following conditions are satisfied.

1. ∀i = 1..n Ai∈A, and

2. ∃t′∈eval(q) such thatt′[Ai] = vi, ∀i = 1..n.

EXAMPLE 3.3. Assume that a data administrator would like to
know what data sources are related to customer ’AFLAC’. This



translates to selecting from theProvenance table those tuples hav-
ing aQ-value in attributeRf1 that referencesName and that name
is ’AFLAC’.

This can be expressed as:
select distinct p.Source from Provenance p
where p.Rf1[Name]

.
= [′AFLAC′].

Note that the semantics of the select operation have not changed.
The only new part is the introduction of the “

.
=” conditional ex-

pression (predicate) for values of typeQ. The way this condition
is evaluated is a topic of a subsequent section. The symbol “

.
=” is

used instead of “=” to emphasize the different predicate.
Another point worth clarifying is thatQ-values can specify mul-

tiple conditions on multiple attributes. Our examples are kept sim-
ple for expository purposes.

3.3 Joins Using a Q-value
The valuesv1, . . . , vn in Definition 3.2 can be either constant

values as is the case in Example 3.3, or relational atomic expres-
sions that take values during query evaluation. The abilityto use
such expressions provides the means to form joins that are based
onQ-type columns, allowing tables representing metadata to beas-
sociated to the data tables.

EXAMPLE 3.4. A data administrator has discovered that in the
database in Figure 1 the customer names starting with “A” violate
the format policy and would like to know the source from wherethey
originate. She knows that the provenance information is stored in
theProvenance table where attributeRf1 specifies the association
between the data and the metadata. She issues the following query:

select distinct p.Source from Customers c, Provenance p
where p.Rf1[Name]

.
=[c.Name] and c.Name LIKE ’A%’

What the query does is to select all the customers whose name starts
with letter “A”. For every such tuplec it checks if there is a tu-
ple p in Provenance with a Q-valueq in p.Rf1 such that relation
eval(q) has an attributeName and there is at least one tuple in it
with the value in columnName equal to the value ofc.Name. If yes,
then tuplesc andp pair up. The answer of the above query on the
instance of Figure 1 is the tuple[′NJDB′].

Note again that this has the same semantics as the regular SQL
join operator (only the join condition is different since itis based
on aQ-type column). The result of its execution if theselect clause
wasselect “*”, would consist of the attributes ofCustomers con-
catenated to the attributes ofProvenance. TheQ-type attribute
values will be the query expression presented as a string.

Figure 2 provides a visual explanation of when a tuple in one
relation R2 can form a join with tuples in a relationR1 when
the join is based on itsQ-type column Q and the set of attributes
X = {X1, . . . , Xn} of R1. This is represented through the
conditionR2.Q[A1, . . . , An]

.
=[R1.X1, . . . , R1.Xn]. The shaded

square represents the result relationS of eval(q) whereq is the
value of columntR2

[Q] of a tupletR2
of relationR2. A tupletR1

of R1 pairs up with tupletR2
if all the attributes inX also exist in

S, and there is at least one tuple inS with which tR1
agrees on all

the attributes inX. Those tuples ofR1 that will join with tupletR2

are illustrated inR1 by the thick horizontal lines.

EXAMPLE 3.5. The data administrator wants to find the names
of the technicians who can verify the consistency of the circuit id
of New Jersey business customers. To determine that, she is look-
ing for theTechnicians annotations that have been placed over
New Jersey business customerCircuitID numbers. The associa-
tion between theCustomers data and itsTechnicians metadata

information is done through a many-to-many relationship imple-
mented by tableXJ. Note that in contrast to traditional join ap-
proaches, there are no common attributes betweenXJ, Customers,
and Technicians. The join is achieved through the intensional
description of the queries stored in the twoQ-type columns of table
XJ. First, a query is constructed to retrieve the New Jersey business
customers.

select * from Customers c
where Loc=’NJ’ and c.Type=’business’

It is then enhanced to also retrieve the tuples of tableXJ

that contain some intensional reference to the circuit ids of these
Customers. This is achieved through a join between theQ-values
in attribute Qc and the attributeCircuitID of Customers. The
query becomes:

select * from Customers c, XJ j
where c.Loc=’NJ’ and c.Type=’business’ and

j.Qc[CircuitID]
.
=[c.CircuitID]

From the tuples that appear inXJ, the first is for residential cus-
tomers, so it cannot satisfy the query specifications. The third tuple
does not mentionCircuitID in its select clause, so it cannot sat-
isfy the query specifications either. The second tuple ofXJ will
form a join pair with everyCustomers tuple that agrees on the
CircuitID attribute value with at least one tuple in the evaluation
of the queryqC2.

The result of the join betweenCustomers andXJ will also have
to be associated with theTechnicians tuples. This is done in a
similar way through a join on columnQt of XJ and the attributes
of Technicians. The final query is:

select t.Name from Customers c, XJ j, Technicians t
where c.Loc=’NJ’ and c.Type=’business’and

j.Qc[CircuitID]
.
=[c.CircuitID] and

j.Qt[Name]
.
=[t.Name]

If the administrator was interested in the names of the techni-
cians that can verifyeitherthe phone and the circuit id of business
customers, then the final query would have been:

select t.Name from Customers c, XJ j, Technicians t
where c.Loc=’NJ’ and c.Type=’business’and

(j.Qc[PhoneLine]
.
=[c.PhoneLine] or

j.Qc[CircuitID]
.
=[c.CircuitID])

and j.Qt[Name]
.
=[t.Name]

In this case, both the second and the third tuples ofXJ would
have been relevant. If the administrator was interested in techni-
cians that can verifyboththe phone and the circuit id, then the final
query would have been:

select t.Name from Customers c, XJ j, Technicians t
where c.Loc=’NJ’ and c.Type=’business’and

j.Qc[PhoneLine,CircuitID]
.
=[c.PhoneLine, c.CircuitID]

and j.Qt[Name]
.
=[t.Name]

which is not equivalent to the query:
select t.Name from Customers c, XJ j, Technicians t
where c.Loc=’NJ’ and c.Type=’business’and

j.Qc[PhoneLine]
.
=[c.PhoneLine] and

j.Qc[CircuitID]
.
=[c.CircuitID]

and j.Qt[Name]
.
=[t.Name]

This is because, in principle,differenttuples in the evaluation of
a Q-value query expression can satisfy the two conditions linked by
theand, while in the former query thesametuple in the evaluation
of theQ-value query expression has to satisfy the joint condition on
phone and circuit id.



THEOREM 3.6. Given aQ-valueq, theequivalent classof q is
the set ofQ values whose query is equivalent to the query ofq. The
results of selections and joins are not affected by the use ofdiffer-
entQ-values assuming that they all belong to the same equivalent
class.

To realize why this is true one needs to observe that selections
and joins onQ-type attributes are based on the data instances of the
relations generated by the evaluation of theQ-values. Thus, replac-
ing aQ-value with an equivalent one, will not affect any query that
is based on thatQ-value. The same applies if a tuplet containing a
Q-valueq is replaced by a set of tuples that differ fromt only on the
Q-type attribute and the union of the evaluation of theirQ-values is
equal to the evaluation ofq.

3.4 Joins Between Q-values
Joins can also be performed onQ-type columns of different rela-

tions, providing the ability to check for the existence of a common
tuple in the result relations of the evaluation of their respectiveQ-
values.

DEFINITION 3.7. Let t1 (t2) denote a tuple of relationR1

(respectiveR2), with a Q-type attributeQ1 (Q2), and A1 (A2)
be the set of attributes in the result relation ofeval(t1[Q1])
(eval(t2[Q2])). If A1, . . . , An, A′

1, . . . , A
′

n are attribute names,
expressiont1.Q1[A1, . . . , An]

.
=t2.Q2[A

′

1, . . . , A
′

n] evaluates to
true if

1. ∀i = 1..n Ai∈A1 andA′

i∈A2 , and

2. ∃t′∈eval(t1[Q1]), ∃t′′∈eval(t2[Q2]), such thatt′[Ai] =
t′′[A′

i], ∀i = 1..n.

EXAMPLE 3.8. Assume that one would like to know which data
sources have contributed to tuples that have the samePhoneLine

as tuples referenced by theNJDB source. This can be expressed as:
select p2.* from Provenance p1, p2
where p1.Source=’ NJDB’ and

p1.Rf1[PhoneLine]
.
=p2.Rf1[PhoneLine]

The answer to this query will include both tuples of the
Provenance table. In particular, the second tuple will be included
sinceq mentionsPhoneLine in its select clause, and botheval(q1)
andeval(q2) reference commonCustomers tuples.

3.5 Discussions
Using Catalog Tables: One of the issues that we have not explic-
itly discussed yet is how one can know which are the right tables
to join. How can one know that the information stored in a specific
table is metadata information of another, and how to know that a
join on a specificQ-type attribute makes sense. This question is
no different from the question of finding the right join pathsin a
relational schema. Recall that the relational model does not disal-
low joins that are based on any type-compatible attributes,even if
they do not necessarily make semantic sense. It is up to the user
to identify the right semantics either with external knowledge or by
looking at schema constraints like key/foreign key relationships. In
a similar fashion, it is assumed that the catalog tables of a database
management system record theQ-type attributes that exist in the
database. By querying it, one can find what parts of what tables are
referenced byQ-values to form meaningful joins.
Syntactic Correctness: Since the query expressions inQ-values
may have to be executed at run time, a fundamental requirement

one wants to guarantee is their syntactic correctness. Syntactic cor-
rectness can be checked at the time of the value insertion or modifi-
cation through a function that plays a role similar to the check con-
straints defined on relational tables. The function can alsocheck
for possible recursions.

A related issue is what happens when schemas are altered, be-
cause certain queries of the existingQ-values may become incon-
sistent. Mechanisms similar to those used for views when theun-
derlying schema is altered [20, 25] can be used to deal with these
cases.
Dynamic vs Static Associations: Q-values naturally supportdy-
namic associations. As such, no special care needs to be taken
when the data is updated. Consider, for instance, a data tuple t that
satisfies the conditions of the query expression of aQ-valueq in a
metadata tupletm. Naturally, this means thattm is associated to
t. Now, assume thatt is modified. If its modified values continue
to satisfy the conditions ofq, t will remain associated totm, but
if not, it will not. If another tuplet′ that was not initially associ-
ated totm is modified and its new values are such that they satisfy
the conditions ofq, thent′ will become automatically associated
to tm. This helps having metadata with generic references to data,
independently of the current database instance. In Figure 1, for in-
stance, the first tuple of tableProvenance is meant to be associated
to any tuple of customers with location ’NJ’, that exists, ormay ex-
ist in the future, in the database. This form of dynamic behavior is
also found in views where the view query specifies certain condi-
tions and at any point in time, its instance depends on the instance
of the base tables.

An alternative semantics is the one in which a metadata entryis
associated with certain data tuples and only with them. Thismeans
that if at a later time new data tuples are added, even if they satisfy
the conditions of theQ-value query, they will not be considered
associated to the metadata tuple. To support this kind ofstaticse-
mantics, the system needs to “remember” the data with which a
metadata entry was initially associated. In our system dynamic se-
mantics is the default, but static semantics is also supported.

4. IMPLEMENTING QUERY-TYPES
This section describes howQ-types can be implemented in a

database management system in order to provide the ability to ef-
ficiently and effectively manage data, metadata and their associa-
tions in a unified way. A highlight of this approach is that it builds
on existing relational database technology, that makes it possible to
build on top of modern commercial database management systems.

First, we present a pure rewriting-based strategy. Then, wede-
scribe how index structures on theQ-type attributes, referred to as
Q-indexes, can be used to speed up query evaluation.

4.1 Storage
Our system consists of two main components. One is a set of

auxiliary tables that are used to facilitate query answering involv-
ing theQ-values. These tables can be considered part of the cata-
log schema, thus they do not appear as part of the database schema
presented to the user. Query answering is performed by the second
component which is a query preprocessor. Its role is to identify the
parts of the query that refer toQ-type columns and rewrite them to
expressions that use the auxiliary tables. The outcome of the pre-
processor is a query in standard SQL that can be executed by the
database management system. The result of the query is a relation
as expected.Q-type column values are presented as strings by de-
fault, but additional functions can be defined to transform them to
other forms.



QTypeValues
Qid TblName ColName RId
q1 Provenance Rf1 1101
q2 Provenance Rf1 1011
... ... ...

AttrTbl
Qid AttrName
q1 Name
q1 Type
q1 PhoneLine
q2 Loc
q2 PhoneLine
q2 CircuitID
... ...

Figure 3: Auxiliary tables for Q-values

A first step in supporting queries as values is the introduction of a
new user-defined type calledQ. The type is defined as an extension
of the string atomic type, in order to store the query expressions.

A critical task for the query processing system is to be able to
identify and use in a declarative fashion the attributes of the rela-
tionseval(q), i.e., the relations generated by the evaluation of the
query expressions of theQ-values. In current DBMSs, the attribute
names of a table can be turned into values of a column (so that
the relational operators can be applied on them) by using theUN-
PIVOT operator [7]. Unfortunately, UNPIVOT works only on rela-
tions that the DBMS is aware of, i.e., the database tables. Since the
attributes in theselect clause of theQ-values are not recorded in the
catalog tables, UNPIVOT cannot be used for them. To overcome
this limitation, two auxiliary tables are introduced, whose role is to
record that information:QTypeValues andAttrTbl.

TheQTypeValues table associates a unique identifier for eachQ-
value, which is identified using a combination of the (metadata)
table name, the column name, and record identifier of the tuple
in which theQ-value appears. For eachQ-value that exists in the
database, and for each attribute name of its virtual relation, there
is one tuple in tableAttrTbl, which contains the unique identifier
of the Q-type value (from theQTypeValues table), and records an
attribute name of its virtual relation. Figure 3 illustrates part of
the contents of the auxiliary tablesQTypeValues andAttrTbl, that
record the information for the two tuples of tableProvenance as
described in Figure 1.

4.2 Query Evaluation: Alternatives
Having information about theeval(q) relation attributes for the

query expressionq of everyQ-value recorded, user queries involv-
ing (the newly introduced) conditions onQ-type columns can be
evaluated. There are different strategies that can be followed, each
one with its own advantages and disadvantages. Assume that auser
query has a condition of the formS.a[A1, ..., An]

.
= [v1, ..., vn].

One approach is to ignore the condition initially and evaluate the
rest of the query as usual. Then for every variable binding that
is found to be satisfactory, find theQ-value to which expression
S.a evaluates, the constant values to which expressionsv1, ..., vn

evaluate, and test whether the conditions in Definition 3.2 are sat-
isfied. The drawback of this approach is that the conditions of De-
finition 3.2 will have to be checked for every variable binding sat-
isfying the specifications of the remaining part of the user query.
Checking these conditions means evaluating the query expressions
of the Q-values each time. Thus, this approach is preferable in
the case where the variable bindings found to satisfy the remain-
ing part of the user query are highly selective compared to the
bindings and the number ofQ-type values that satisfy condition
S.a[A1, ..., An]

.
= [v1, ..., vn].

An alternative approach is to start from condition
S.a[A1, ..., An]

.
= [v1, ..., vn] by first finding all theQ-values in

column S.a whose query expressionselect clause specifieseach
attribute name in the setA1, ..., An. For eachQ-value that passes
this first test, all the variable bindingsv1, ..., vn that satisfy condi-

tion S.a[A1, ..., An]
.
= [v1, ..., vn] are computed, and for each one

of them, it is checked whether the rest of the conditions specified
in the user query are also satisfied. This approach is preferable
if the number ofQ-values that pass the first test and the variable
bindings that satisfy conditionS.a[A1, ..., An]

.
= [v1, ..., vn] is

much smaller than those bindings that satisfy the other conditions
that exist in the user query.

EXAMPLE 4.1. Consider the query
select p.Source from Customers c, Provenance p
where p.Rf1[Name]

.
=[c.Name] and c.Name LIKE ’A%’

introduced in Example 3.4. The first approach suggests to ignore
the condition onp.Rf1, find all the customers with a name starting
withA and make all the possible pairs with theProvenance tuples.
For each such pair, take theQ-value in columnRf1 ofProvenance.
Test whether the evaluation of that query would have contained a
columnName. This is done either by analyzing itsselect clause,
or by performing a lookup on tableAttrTbl where this informa-
tion has been recorded. If theQ-value fails to pass the test, the
pair of Customers andProvenance tuple is rejected. If not, the
query expression is evaluated, and it is checked whether in the re-
sult relation there is a tuple with a valuev in columnName equal
to the value in theName attribute of theCustomers tuple (this is
the value to which expressionc.Name evaluates). If this test is also
passed the value of attributeSource is reported to the user. The
drawback here is that theQ-value expressions will have to be eval-
uated multiple times.

The second approach suggests to evaluate each query that ap-
pears in columnRf1 first, and check whether it has an attribute
Name in its result set. For those that do, select the values that
appear in that attribute and build a set of names. Then, the re-
mainder of the query can be evaluated where instead of condition
p.Rf1[Name]

.
=[c.Name], it is now required that the value to which

expressionc.Name evaluates exists in the set of names that was con-
structed. The drawback here is that the set of names may be really
large, but only a few satisfy the condition about starting with A,
which means that many query expression evaluations could have
been avoided.

Clearly there is no best approach to follow always. Each time
it depends on the specific query that is executed. The decision on
what to follow cannot be made without some data statistics like
those kept by the database management system. Unfortunately,
these statistics are not always available to external applications. For
that, we will try to rewrite the query in such a way that the data-
base engine will be able to take the right decisions based on its data
statistics information.

The main issue in this process is that the expressions of theQ-
values are not part of the query provided by the user or the applica-
tion. They are “hidden” as values in the database. Thus, the query
engine cannot use them when deciding the evaluation and optimiza-
tion strategy. To overcome this issue, we introduce a preprocessing
step that has two main goals.

The first goal is to check the satisfaction of the first condition in
Definition 3.2. As explained, such a check could not be performed
by the query engine since the attributes are not explicitly mentioned
in the user query but are encoded in theselect clause of theQ-value
expressions. This preprocessing step can be seen as an UNPIVOT
operation followed by a relational selection on the attribute names.
The difference is that instead of being applied on the materialized
tables of the database, it is applied on the virtual relations specified
by the query expressions in theQ-values.

The second goal is to expose these query expressions of theQ-
type values to the database optimization engine, by making them



part of the query that the user or the application has posed. That
way, the query optimizer will be able to balance all the factors and,
based on the information that the DBMS has about data distribu-
tions and value cardinalities, it will take the most promising deci-
sion for the task at hand.

Once this preprocessing step is done, the
.
= condition can be

removed from the modified user query expression. A detailed de-
scription of how this is achieved is described next.

4.3 Query Rewriting: Using Union
Consider a user query of the form

Qu: select expu
1

,...,expu
g from Ru

1
, ...,Ru

h
, T

where condu
1

and ... and condu
f

and

T.a[A1, ...,An]
.
= [e1, ..., en].

Step 1: The first step is to identify which of all theQ-values in
attributeT.a have attributes namedA1, ..., An in the relation ob-
tained by the evaluation of their query expression. This is achieved
through the following query on the auxiliary tablesAttrTbl and
QTypeValues:

select tv.RId
from QTypeValues tv, AttrTbl at1 , ..., AttrTbl atn
where tv.TblName=’T ’ and tv.ColName=’a’

and tv.Qid=at1 .Qid and at1.AttrName=’A1 ’
and tv.Qid=at2 .Qid and at2.AttrName=’A2 ’
...
and tv.Qid=atn .Qid and atn.AttrName=’An ’

Step 2: From all theQ-values identified in Step 1, only those whose
query evaluation has a tuple with valueej in attributeAj , ∀j =
1..n, have to be kept.

Let qi be aQ-value identified through the first step.
A new queryQi is constructed as follows:

Qi: select *
from (qi) AS R
where R.A1=e1 and ... and R.An=en

This query answers the question of whethereval(qi) has a tuple
with a valueej in attributeAj , wherej ranges between1 andn.
If the result is an empty set,Q-valueqi does not satisfy condition
T.a[A1, ..., An]

.
= [e1, ..., en]. Since we are not interested in the

actual results of queryQi but only in finding whether it returns an
empty set or not, theselect clause can be rewritten toselect TOP
1 ’1’. The constant value ’1’ is a random constant and the ’TOP1’
clause instructs the query processor to return only the firsttuple in
the result set with some potential saving in execution time.
Step 3: Once the set of queriesQi have been constructed for the
Q-type values returned during Step 1, conditionT.a[A1, ..., An]

.
=

[e1, ..., en] in the user query can be replaced by a condition that
tests whether theQ-value of attributeT.a is one of those computed
during Step 1, and if so, that its respective queryQi returns a non-
empty result set. To do that, we exploit theUnion feature of SQL
queries. After the replacement of conditionT.a[A1, ..., An]

.
=

[e1, ..., en], queryQu becomes:

select expu
1

,...,expu
g from Ru

1
, ...,Ru

h
, T , (q1) AS R

where condu
1

and ... and condu
f

and

T.RId=rid1 and (R.A1=e1 and ... and R.An=en)
Union

select expu
1

,...,expu
g from Ru

1
, ...,Ru

h
, T , (q2) AS R

where condu
1

and ... and condu
f

and

T.RId=rid2 and (R.A1=e1 and ... and R.An=en)
Union
...
Union

select expu
1

,...,expu
g from Ru

1
, ...,Ru

h
, T , (qi) AS R

where condu
1

and ... and condu
f

and

T.RId=ridi and (R.A1=e1 and ... and R.An=en)

To avoid the nested queries, the above expression can be rewritten
by embedding thefrom and where clause of theqi query in the
respective clauses of the union query component they appearin.
For instance, if queryqi is:

select e′p AS Ap, e′o AS Ao, ...,e′
k

AS Ak, e′r AS Ar

from S1, ...,Ss

where cond1 and ... and condt

the last component of the union expression can become:
select expu

1
,...,expu

g from Ru
1

, ...,Ru
h

, T , S1, ...,Ss

where condu
1

and ... and condu
f

and

T.RId=ridi and (e′
1
=e1 and ... and e′n=en) and

cond1 and ... and condt

All the operators in the rewritten query are standard SQL oper-
ators, thus, it can now be sent to the database management system
for execution. Furthermore, since the query expressionsqi of the
Q-values are explicitly mentioned in the query, the optimizer will
be able to take them into consideration, and come up with the best
evaluation strategy.

EXAMPLE 4.2. The user query
select p.Source from Customers c, Provenance p
where p.Rf1[PhoneLine]

.
=[c.PhoneLine]

and c.Name LIKE ’A%’

will get the form:
select p.Source
from Customers c, Provenance p, Customers c2
wherec.Name LIKE ’A%’ and p.RId=r1 and

c2.Loc=’NJ’ and c2.PhoneLine=c.PhoneLine
Union

select p.Source
from Customers c, Provenance p, Customers c2
wherec.Name LIKE ’A%’ and p.RId=r2 and

c2.Type=’business’and c2.PhoneLine=c.PhoneLine
Union
....

The... symbol in the query denotes additional cases that may exist
due to otherQ-values of attributeRf1 in table Provenance that
may qualify but do not appear in the portion of the relation illus-
trated in Figure 1. Note also that due to Step 1, the above queries
are guaranteed to be union compatible.

An alternative approach is to define virtual views based on the
expressions of everyQ-value that exists in the database. The rewrit-
ing can then refer to the virtual relation described by theQ-value
through the respective view. We have tried that approach butwe
found it having a very poor performance, which may be due to the
way the query optimizer was handling the virtual views, so wedid
not consider this approach further.

4.4 Query-Indexes
Query evaluation based on the query rewriting approach de-

scribed in the previous section is expected to be efficient when the
rewritten query has only a few disjuncts, i.e., when the number of
Q-type values in attributeT.a that are identified in Step 1 is small.
If the metadata table contains a large number ofQ-values, all of
which have attributes namedA1, . . . , An, then each of theseQ-
values would need to be evaluated, even if[e1, . . . , en] were a tuple
of constants. To further prune out “irrelevant”Q-values in attribute
T.a, the values present in the relations obtained by evaluatingthe
queries would need to be used.

In this section, we present such an approach based on maintain-
ing indexes on theQ-values, which we refer to asQ-indexes, for this
purpose. OurQ-indexes can be easily realized using relational ta-
bles and B-tree index structures available in commercial relational
database management systems. Such an index can complement
other approaches that use queries as values [23] since it canhelp
them perform their functionality more efficiently.



4.4.1 Indexing Alternatives
Clearly, the best possible index from the perspective of min-

imizing the query execution time would be an index that given
any n-tuple of attributes[A1, . . . , An] and anyn-tuple of values
[v1, . . . , vn] would precisely identify theQ-values in attributeT.a

that satisfy the conditions of Definition 3.2. We implemented such
an index and found that it is unlikely to be feasible in practice,
since it would need to essentially index the “union” of the relations
obtained by evaluating all the queries in attributeT.a.

A more space-efficient alternative is to build multiple single at-
tributeQ-indexes that given any attributeAi and any valuevi would
precisely identify theQ-values in attributeT.a that satisfy the con-
ditions of Definition 3.2. Such an approach has both advantages
and disadvantages.

The key disadvantage is that given ann-tuple of attributes
[A1, . . . , An] and ann-tuple of values[v1, . . . , vn], one cannot
precisely determine the desiredQ-values, using the single attribute
Q-indexes. Intuitively, the reason is that even if eachvi appeared in
attributeAi of a queryq’s relationRq , they may not all be present
in thesametuple ofRq .

However, the single attributeQ-indexes can be used as aneffec-
tive filter, since they may have false positives whenn > 1, but
they do not have false negatives. Forn=1 there are neither false
positives nor false negatives.

The key advantages of maintaining multiple single attribute Q-
indexes instead of the covering index on all attributes are the signif-
icantly lower space cost, and the consequently lower cost ofcon-
structing and maintaining such indexes. Intuitively, the reason is
that even if a valuevj appears in attributeAi in multiple tuples of
a queryq’s relationRq, the pair(vj , q) need be indexed only once
in the single attributeQ-index ofAi.

4.4.2 Realizing Single Attribute Query-Indexes
A simple and elegant way of implementing a single attributeQ-

index on attributeAi, in a commercial database system, is to (i) ma-
terialize a 3-ary relational table(val, qid, count), where the mean-
ing of a tuple(v, q, c) in this table is that valuev appears in attribute
Ai of c different tuples of queryq’s relationRq , (ii) make the pair
<val, qid> a key for that table, and (iii) create a B-tree index on
val. Thecount field is present merely to efficiently maintain this
index under insertions, deletions and modifications to the base ta-
bles used in the definitions of the metadata queries.

EXAMPLE 4.3. The tableITNameand ITType in Figure 4 il-
lustrate a fraction of a realization of a single-attribute index for the
attributesName andType, respectively, of the database instance in
Figure 1. The interesting observation is that since<val, qid> is
a key, it is likely to have a unique index. If aQ-type join involves
only one attribute (casen=1 mentioned in section 4.4.1), an in-
telligent query optimizer can implement the join using the index
without having to access the data table.

4.4.3 Updating Single Attribute Query-Indexes
For theQ-index to be useful, it would need to be efficiently up-

datable as data and metadata entries are inserted, deleted and up-
dated in the database. We next describe how this can be achieved.

Suppose that the various queries in theQ-type attributeT.a are
select-project queries over single tables, and theirwhere clauses
are conjunctions of conditions of the formR.Ak ≤ vk and
R.Am ≥ vm, wherevk and vm are constants. Then, a con-
dition of the form R.Ak ≤ vk present in thewhere clause
of query qm can be represented in a relational table having the

Customers
Name Type ...
AFLAC business ...
J. Lu residence...
H. Ford residence...
AMEX business ...
NJC business ...
BCT business ...
... ... ...

ITName
v q c
AFLAC q1 1
H. Ford q1 1
NJC q1 1
BCT q1 1.
ITType
v q c
business q1 3
residentialq1 1
... ... ...

Provenance
Rf1 Source ...
q1 NJDB ...
q2 3State ...
... ... ...

LEQ = GEQ
R A t q
CustomersLoc NJ q1
CustomersType businessq2
... ... ... ...

Figure 4: RDBMS Q-index realization.
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Figure 5: Size increase as a function of the percentage of data
associated to Metadata.

schemaLEQ(relation, attribute, value, queryid). Similarly,
conditions of the formR.Am ≥ vm can be represented in a
relational tableGEQ with the same schema. When a new tu-
ple (t1, . . . , tn) is inserted in relationR(A1, . . . , An), one can
query the relationLEQ for tuples of the form{(R, Ai, t, q)|t <

ti, 1 ≤ i ≤ n} and the relationGEQ for tuples of the form
{(R, Ai, t, q)|t > ti, 1 ≤ i ≤ n}. Such tuples can be efficiently
identified using standard relational indexes such as B-trees on the
concatenation of the first three attributes ofLEQ (or GEQ). A
queryq present in an identified tuple is clearlynot affected by the
insertion, and can be eliminated. Any query that is not eliminated
has all the conditions in itswhere clause satisfied by the newly
inserted tuple, thereby identifying the tuples that need tobe in-
serted/modified in theQ-index.

If a new tuple is inserted in a table with aQ-type column, the
query expression of theQ-value for that column is evaluated. The
values of each attribute in the result relation are used to update the
respective tables of theQ-index. This is done by checking whether
there is an entry with the pair(value, queryid) already in the in-
dex table. If yes, itscount value is increased by 1. Otherwise, a
new entry<value, queryid, 1> is inserted.

Note that using single attribute indexes does not mean that theQ-
value queries have only one attribute. They may involve multiple
attributes, but each index is on one attribute only.

The experimental section that follows will demonstrate thesig-
nificant benefits obtained by usingQ-indexes.



5. EXPERIMENTAL EVALUATION
Our proposed framework has been implemented in a system

called MMS (Metadata Management System) [22] on top of a com-
mercial relational database management system. A number ofex-
periments were conducted with three metrics in mind: the space
usage, the update cost and the query execution time. The results
of the experiments indicated that:(i) Due to the intensional way
in which the metadata is associated with the data in MMS, a lotof
repetition is avoided and the space usage of the metadata wasvery
low. (ii) In the absence of anyQ-index, updates to both metadata
and data entries are very cheap in MMS. Maintaining theQ-index
under updates adds additional cost, but is still cheaper than exist-
ing metadata management systems for updates on metadata, while
being more expensive for updates on the data.(iii) Query execu-
tion, in the absence of anyQ-index, is expensive in MMS, since
it involves the analysis and evaluation of eachQ-type query value.
However, the experiments indicate that the proposedQ-index can
not only significantly reduce the query execution time, but in many
cases offer much better performance than that offered by other ex-
isting metadata management systems. This is analogous to the ben-
efits provided by the use of indexes for SQL query evaluation.

The experiments were performed on a dataset obtained from a
real enterprise application having data about customers, their pro-
visioned hardware, their billing information and the service orders
that had been placed for them. On that data, we associated multi-
attribute metadata information.

For comparison purposes, we chose two recent annotation man-
agement systems: DBNotes [4] and MONDRIAN [12], because
annotations are a generic and commonly used kind of metadata. In
terms of semantics, in these systems the association between the
data and the annotation is explicit, and they cannot accommodate
future tuples. For fairness, we have ignored that factor in our ex-
periments in order to make sure that the expressive power of all the
systems is the same.

In DBNotes, every relational table column is associated with a
second column in the same table that is used to hold the annota-
tion. If a value in a tuple has more than one annotation associated
to it, then the tuple is recorded multiple times, once for every anno-
tation. Since our metadata information consists of multiple fields,
to simulate this behavior in DBNotes, we had to associate more
than one column to each attribute. Mondrian follows a similar, but
more compact, approach. For each relation there is one extracol-
umn that keeps the annotation, and also for each attribute there is
a shadow column of type bit that can get values 0 or 1, specifying
whether the annotation text refers to the respective attribute or not.
Again, due to the structured nature of our metadata, to simulate the
behavior in Mondrian, instead of one annotation column per table
we had to have more. In our own approach, for each data table,
we had another table in which the metadata was recorded (we will
refer to these as “metadata” tables, as opposed to the “data”tables
that contain the original data, although from the perspective of the
MMS system any table can serve as a “data” or a “metadata” table).
The metadata table had aQ-type column that was used to associate
each metadata tuple with a set of data tuples in a data table. Note
that in the extreme case where every tuple has a separate (andonly
one) metadata annotation, all three approaches are comparable.

For the experiments, we considered data tables of 5 million tu-
ples and metadata tables of up to 500,000 tuples. Indexes were used
in both Mondrian and DBNotes, as well as MMS.

5.1 Space Usage
First, we used all the data entries from the data tables and from

the 500,000 metadata entries we randomly selected a fraction of
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Figure 6: Q-Index size for different footprints.

them so that only a portion of the data was associated to some meta-
data. This was performed for portions of 5%, 25%, 50%, 75%, and
95%. For each one the size of the database was measured. The size
was measured both with and without theQ-index. The same infor-
mation was also encoded in separate databases using the Mondrian
and the DBNotes schemes. The result sizes are all illustrated in
Figure 5. The chart indicates that even when 95% of the data tuples
has been associated with metadata, the MMS approach resultsin a
minor increase in database size. On the other hand, Mondrianand
DBNotes indicate a substantial growth in size as the percentage of
the data bearing metadata gets larger. This is mainly because of the
fact that in Mondrian and DBNotes the metadata information has
to be repeated for every tuple it is associated to. For the case of
DBNotes in particular, it has to be repeated for every columnit is
associated to. In MMS, on the other hand, the annotation textis
stored only once in the metadata table, no matter how many tuples
are associated to it, and most importantly, no additional informa-
tion has to be stored in the data table itself. Furthermore, the use of
theQ-index for theQ-type column in the metadata table results in
only a minor increase in the total database size, a cost that is offset
by the huge benefit theQ-index offers in terms of query execution
time, as we will see later.

The same experiment was repeated with double the number of
metadata entries that are associated to each data tuple. Theresults
were similar to those in in Figure 5, but with increased differences
between the approaches. In particular, the size increase for Mon-
drian and DBNotes was substantial since each data entry had to be
stored as many times as the number of metadata entries it was asso-
ciated to, while with MMS only the metadata entries were doubled
along with the respectiveQ-index entries.

To measure how the size of theQ-index structures are affected
by the characteristics of the data, we kept the size of the data fixed
and we chose different footprint values. The footprint is the num-
ber of data tuples a metadata entry is associated to. This is actually
the number of tuples in the virtual relation specified by theQ-value.
For each footprint value we generated metadata in a way that aspe-
cific portion of the data was associated to metadata. Figure 6indi-
cates the change in size for the different cases. When the footprint
is larger, fewer metadata tuples are needed to cover a specific por-
tion of the data, thus, theQ-index size is smaller. TheQ-index size
for the case of 0% is non-zero because the measurement includes
the space allocated for theQ-index tables by the DBMS.

5.2 Update Cost
Here we investigate the cost of updating the various structures in

the presence of data associated with metadata. The same dataset as



Footprint MMS MMS Q-index Mondrian DBNotes
10 0.002 0.092 1.350 0.650
100 0.002 0.075 1.340 0.654
1000 0.002 0.122 1.617 2.241
10000 0.002 0.600 1.789 2.555
100000 0.002 3.514 12.049 5.945

Table 2: Aver. metadata insertion time (in sec)

before was considered and a series of 2500 new metadata entries
were inserted one after the other. The average time of performing
one such insertion was measured for each of the four different ap-
proaches that we are testing. The results are illustrated inTable 2
for multiple such experiments with different footprints. Since in
MMS the metadata are stored in a separate table from the data,and
the metadata entries are much fewer than the data, insertions were
extremely fast. For theQ-indexed version of MMS, some extra
time is needed to update theQ-index structures but it is still faster
than Mondrian and DBNotes.

Deletions were also tested on metadata. For Mondrian, DBNotes
and the non-Q-indexed version of MMS the performance is similar
to that of insertions. TheQ-indexed version, on the other hand,
indicates a 30% speedup over the one required for insertion.

Insertions and Deletions were also tested for data entries.Table 3
indicates the average time to delete a data tuple from a data table.
For Mondrian, DBNotes and the non-Q-indexed MMS this time is
affected by the size of the data table. Since MMS does not store the
metadata along with the data, as Mondrian and DBNotes do, dele-
tion time is better. TheQ-indexed version of MMS, as expected,
requires extra time in order to update theQ-index structures. The
average time to execute a data insertion are analogous to those of
data deletion for the same reasons.

5.3 Query Execution Time
The next set of experiments was performed in order to measure

the query execution time. The important factor studied was how
fast the join between data and metadata values can be performed
using theQ-values. As before, a database was considered with data
tables of 5 million tuples and metadata tables of various sizes up to
500,000 tuples. The kind of queries that were performed werethose
forming a join between the data and the metadata table based on the
Q-values. The queries were run on databases with differentQ-value
footprints. For larger footprints the metadata table entries were nat-
urally fewer (we kept only as many metadata entries as required to
ensure that every data entry had some metadata tuple associated
to it). The queries were performed on both theQ-indexed and the
non-Q-indexed version of MMS, and their equivalent queries were
also run on the DBNotes and Mondrian databases. The results are
illustrated in Figure 7. TheQ-indexed MMS version always signifi-
cantly outperforms the other approaches. Furthermore, as the foot-
print value gets larger the execution time also gets smaller(since
there are fewer metadata entries). The non-Q-indexed MMS (not
shown in Figure 7) had much larger execution times because for
each distinctQ-value, its query had to be evaluated. Such an eval-
uation took an average of 3 secs perQ-value, but since there were
manyQ-values the overall time was that many times larger.

One of the unique features of MMS is that metadata can be
queried independently of the data it is associated to. This allows
metadata of the same kind, say for instance, user comments, to be
all stored together in the same table independent of the datafor
which the comment was made. This permits a very compact stor-
age schema and allows queries of the form “What comments have
been made so far mentioning circuit IDs?” to be efficiently an-
swered. Answering these kinds of queries in the schemas provided

Metadata MMS MMS with Mondrian DBNotes
Entries Q-index
500000 0.002 20.697 0.069 0.111
50000 0.002 2.345 0.114 0.105
5000 0.002 0.869 0.109 0.100
500 0.002 0.192 0.160 0.064
50 0.002 0.076 0.111 0.087

Table 3: Average data deletion time (in sec).
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Figure 7: Average query execution time.
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Figure 8: Avg. metadata-query execution.

by Mondrian or DBNotes would first require knowledge of the data
schema, but even if the schema is known, the performance willbe
poor since data tables are usually huge. Figure 8 illustrates the
average execution time of such queries in all the four approaches
evaluated here.

Another interesting feature of MMS is that it allows metadata
to be defined easily over other existing metadata. This requires
queries with multiple joins based onQ-types, which introduces the
need for the final experiment. In particular, we needed to investi-
gate how query execution time is affected by the number ofQ-type
based joins that exist in the query. We tried theQ-indexed approach
for databases with different footprints and for different numbers of
joins. We made sure that for the same database, the queries, even
though they had different numbers of joins, all returned results of
the same size (viz., 1). That way, the observed differences in time
were exclusively due to the number of joins. The results are il-
lustrated in Table 4. Note that the query executions betweenthe



Footprint
Joins 1000 10000 100000
1 0.35 1.182 0.121
2 0.21 1.767 0.431
3 0.28 0.771 0.343
4 0.26 1.923 1.072

Table 4: Avg. Q-type join execution (in sec).

different databases are not to be compared since they have different
results. The graph intends to provide some intuition of the query
executions within the same database. The conclusion is thatthe
number ofQ-type based joins in a query is not a factor that dramat-
ically affects the query evaluation time.

6. CONCLUSION
There is a clear need to associate a variety of metadata with

the underlying data, to understand, maintain, query, integrate and
evolve databases. In this paper, we presented a simple, elegant ap-
proach to uniformly model and query data and arbitrary metadata.
The key intuitions are that: (1) the relational model augmented with
queries as data values is a natural way to uniformly model data, ar-
bitrary metadata and their association, and (2) relationalqueries
with a join mechanism augmented to permit matching of relations
specified byQ-values, instead of only atomic values, is an elegant
way to uniformly query across data and metadata.

Our MMS system implements this approach, providing a mech-
anism for recording metadata into a database without havingto
alter existing tables. User queries are efficiently evaluated using
Q-indexes. We experimentally evaluated the performance of the
MMS system, in comparison with previous proposals (DBNotes
and MONDRIAN) for metadata management, and showed signif-
icant benefits both in terms of space usage and query execution
times. Our results validate the generality and practicality of our
uniform approach to metadata management.
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