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ABSTRACT

There is a growing need to associate a variety of metadata wit

the underlying data, but a simple, elegant approach to tmifo

model and query both the data and the metadata has beereelusiv

In this paper, we argue that (1) the relational model augetewith
queries as data values is a natural way to uniformly model, dai
bitrary metadata and their associations, and (2) reldtioueries
with a join mechanism augmented to permit matching of query r
sult relations, instead of only atomic values, is an elegat to
uniformly query across data and metadata. We describe thé ar
tecture of a system we have prototyped for this purpose, demo
strate the generality of our approach and evaluate the npeaftce

of the system, in comparison with previous proposals forachetia
management.

Categories and Subject Descriptors:
H.2.1 [Database Management]: Logical Design — Data Models

General Terms. Management.

Keywords: Queries as data, metadata management, intensional as-

sociations, annotations.

1. INTRODUCTION

In recent years we have witnessed a tremendous prolifarafio
databases in many fields of endeavor, ranging from corperate
vironments and scientific domains to supporting a diverseoke
applications on the webh. These databases are becomin@sacre
ingly complex, both in their internal structure (e.g., teands of
tables) and in their interactions with other databases aptica-
tions (e.g., mediators and workflows). There is a consequesd
for understanding, maintaining, querying, integratind axolving
these databases. In successfully performing these tastadata
plays an important role. Metadata is data about data, a dacpn
piece of information that is separate in some way from theary
piece of information to which it refers. Metadata examptediide
schema, integrity constraints, comments about the dataifdlo-
gies [1], quality parameters [28, 16], annotations [5, J&2hve-
nance [24], and security policies [3].

Metadata is used in many different fields. In corporate emvir
ments, databases deployed at the core of important busipess
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Kind Ref. | Method Used
Atomic value annotations attached to a blocK of
Annotations | [12] | values within a tuple. They accompany the vallies
as retrieved. Relational algebra query language.
Atomic data values carry their provenance, which
Provenance |[5] | propagates with them as they are retrieved. Query
language supports predicates on provenance
. Data values are associated with quality parame-
Quality [16] | ters (accuracy, freshness, etc.). SQL is exterjded
Parameters to retrieve data using these parameters.
Explicit modeling of schema and mapping infor-
Scher_na & [ﬁ] mation, and associations of it with portions of {he
Mapping [29] data. SQL extension to retrieve data and meta-
Information | [29] | yata that satisfy certain metadata properties.
Credential-based access control. System reads
Security [3] |complex security profiles and returns data results
accordingly.
Loosely-coupled model of information elements,
_Super- 15 marks and links used to represent superimpgsed
imposed (351 | information. It has no specific schema, but i in
Information relational model and can be queried using SQL.
Creation and modification time is recorded wfith
Time [6] |the data and used in query answering. Query [lan-
guage supports predicates on time values.

Table1: Metadata management proposals

ations may contain erroneous, inaccurate, out-of-daténamm-
plete data with a significant impact on query results [8]. uals
applications, data can be tagged with quality parametec®io-
municate suitability, accuracy, freshness or redunda@@y 28],
and schema structures can be annotated with textual desarip
to communicate their semantics. In scientific domains wieta
may be collected from various sources, cleansed, intedjite
processed to produce new forms of data enhanced with new-anal
sis results [19], provenance can be provided as metaddte form
of annotations [4] and schema and mapping information can be
stored in special structures to allow users to apply thein pwg-
ment to assess credibility of query results [24]. In hetersgpus
environments where different sources may use differentsitres
to represent the same real world entity, or the same repeggemnto
model different concepts, metadata can clarify semarpies;ent
misinterpretations or misuses of data, achieve interdyiléya[10]
and allow the retrieval of the data that is best suited to dis& at
hand [21]. In the Internet domain, superimposed infornmatie.,
data “placed over” existing information sources, is useldip or-
ganize, access, connect and reuse information element®ose t
sources [15]. Similarly, security related policies can bsogiated
to the data to control access in various environments [3].



1.1 Metadata Management Approaches

with complex structures can easily be modeled throughioglat

Over the years, numerous proposals have been made by reand attributes. These relations have no special sematfiics, the

searchers for augmenting the data model and the query ditipabi
of a database in order to facilitate metadata managemehte Ta
provides a list of such proposals. While the list is by no nsezx:
haustive, it provides a good sample of the kinds of metadatt t
have been considered of interest and have been studiedsolt al
characterizes the way the problem has been approachedd Base
these approaches one can observe the great variety of regttma
different structures, the kind of data associated with ofegts, and
the way metadata has been used in queries. Some of this neetada
is described by single atomic values, e.g., the creatior tifran
element in the database [6]. Others have a more complexuteic
like the schema mapping information [24] or security [3]rtRer-
more, metadata can be associated either to individual ddtees
[5, 16, 6] or to a group of values, such as a subset of the aitsb
(i.e., a block) of a tuple [12] or a complex XML element [3].

A common denominator of the approaches in Table 1 is the use
of metadata in querying. Some use it to restrict query reswhich
may [6, 16] or may not [5] include metadata alongside thealctu
data results. Others query and retrieve metadata indeptynadé
the data to which it is associated [15].

It is also worth observing that each entry in Table 1 is taitbr
to specific kinds of metadata, and is not directly applicablether
kinds, at least not without some major modifications. Pdstgits
at building generic metadata stores (e.qg., [13, 2]) havel@red
complex modeling tools for this purpose: [13] explicitlypre-
sented the various artifacts using Telos [17], and [2] eygido
data repositories (intended for shared databases of exrgigear-
tifacts). A simple, elegant approach to uniformly model anéry
data, arbitrary metadata and their association has besivelu

Another observation from Table 1 is that metadata has to be ex
plicitly associated with each data item it refers to. Thess how-
ever, practical scenarios in which artensionalassociation may
be more appropriate. For example, in an application thatadas
reviews about restaurants [4], one may need to describepeipyo
that holds for all the restaurants in New York. Using presgiguo-
posals this information would have had to be associatedaitkpl
to every New York restaurant in the database. Furthermatere
tuples cannot be accommodated without explicit associatior
instance, if ten new restaurants are opened in New York, rihe- p
erty that holds for all the restaurants in New York shouladisld
for them. However, this cannot be achieved unless the pipper
gets explicitly associated to these ten restaurants. Asmraltive
approach (which we advocate) is to use an intensional gxieri
of the restaurants (data) that have that property (metpdatthe
same way virtual views use queries over base tables to tescri
their instances, and future tuples that are inserted otatefeom
the base tables, are automatically included or removed tiwm
instances of the views.

1.2 Our Approach

In this work, we describe a study that aims to accommodate in
one simple framework the different kinds of metadata, tlitedi
ent structures, the different ways that metadata is agsaociaith
data and the different ways in which it is used in queries. Weae
that in order to achieve this we need a framework that is gmpl
and abstracted from the specifics of each kind of metadatangla
observed that the operations one needs to perform on matadat
similar to those people do with data, we propose the use oflatd
data management techniques for metadata, so that both mhta a

metadata can be managed in one single framework. We advocate

that the relational model is adequate for such a purposeaddé&

same piece of information can be viewed either as data or t&s me
data. It can also be queried using a relational query largguagn
independently of whether or not it is associated to some data

Our philosophy is that although, at the conceptual levadreh
may be a distinction between data and metadata, at the databa
level, for the purpose of management, everything is repteseas
a relation. This approach is not different from the one folid by
the relational model, where at the conceptual level therg lpeaa
distinction between entities and relationships, but atdhbase
level, everything is represented through relations.

The main mechanism used in the relational model to associate
data in different relations is the join on one or more attieisu
If data and metadata have been modeled as relations, then the
same mechanism can be used to describe the associatiorehetwe
data and metadata. Unfortunately, the relational join @ip@n has
two main limitations that make it inadequate for this inteddise:

(i) The association is always at the tuple level, i.e., itaspossible

to associate a metadata tuple with only a subset of attskftan-
other tuple in a different table, since there is no way to gpélce
attributes that the metadata refers to; (ii) It requiredieit@associ-
ation between the tuples through the join attributes, agiqusly
mentioned in the New York restaurants example. To cope with
these issues, we propose the use of queries as values indhe re
tional tables. In particular, we show how attributes of tygpeery”,

can achieve the required functionality.

Using queries as data values is not entirely new. Relational
DBMSs already store in the catalog tables the definitionigaef
their views. In this case, however, queries are considerkdnsa
information and despite the fact that they can be querietyusQL,
they are not considered part of the instance data. Our pabpos
raises such metadata to the level of data, and provides a&dnifi
mechanism for modeling and querying across data and matadat
Apart from the system catalog tables, queries as values liese
proposed in INGRES [23], with a similar functionality adegtby
Oracle [11]. They have also been studied in the context aficelal
algebra [18], and the Meta-SQL system [9]. Here we show hdsv th
idea can be used in the service of metadata management. Afkey d
ference is that previous approaches require the existérmrecoal
operator that evaluates the queries stored as values atreypos-
sibly resulting in nested relations, or in some cases thegatation
of the outer-union of these results. In contrast, we onlydreeeew
kind of predicate that makes usecfal, leading to a more efficient
implementation. Our use of queries as values is similaréadte
of RDF resource descriptions [26], but our approach is muctem
generic, since we can use as a resource description theofuémp
of SQL queries.

Our contributions can be summarized as follows:

1. We elevate metadata to first class citizens of the database
and the query language, without requiring any special se-
mantics. The approach allows metadata management with-
out any modification of the semantics of the relational model
and SQL, and without having to alter existing tables, since
we use stored queries to refer to the data which the metadata
entries describe.

. We extend the traditional join mechanism of the relationa
model to support joins that are based not on single values,
but on a relation specified by a query stored in one of the
attributes. This allows intensional specification of théada
to which the metadata is associated. Furthermore, it allows
metadata tuples to be associated to not just whole tuplés, bu
also to portions of them.



Customers Provenance Per missions
Name [Type[Loc|PhoneLine |CircuitlD Rf1|Source|IP Protocol Rf2|Users
AFLAC |[bus [NJ [4078417332245-6983 gl [NJDB [147.52.7.8http 11| Administratorg
J.Lu |res |NY |201939446(245-7363 g2 |3State |148.62.1.11ftp ql2|Guests
H. Ford[res [NJ |2159537607245-7564
AMEX |bus [NY [317876354(343-5002
NJC  |bus |NJ [9730918327981-5002 ql: select Name,Type,PhoneLine qll:select * from Provenance
BCT |bus |NJ (9734858504273-6019 from Customers where Loc="NJ’ where IP LIKE '147.%’
g2: select Loc,PhonelLine,CircuitID g12: select Name from Customers
from Customers where Type="business’ where Loc="NY’
XJ Technicians
Qc [Qt Name | Contact Company gc .- select CircuitID from Customers where Type='residence’
qc | qrt W. Farkad 4804978353AT&T gr1. select * from Technicians where Company="CISCO’
qc2|qr2 S. Gilbert| 3178757627 Verizon gc2. select PhoneLine,CircuitID from Customers where Type='business’
qos | ars M. Henry | 8187167852AT&T qr2. select * from Technicians where Company='Verizon’
C.Urs 7739735713AT&T qc3. select PhoneLine from Customers
Y. James | 7344676191 CISCO qrs. select * from Technicians where Company="AT&T’

Figure 1. A database with metadata information stored in regular tables as data.

3. We explore alternative implementation mechanisms that a
low the use of queries as data values in modern relational

ColumnR£1 can be used to specify the relationship between the
specific tuple and the data it annotates. It may containe values

databases and also allow joins based on such values. Weassuming thallame is the key inCustomers. For instance, tuple

present pure rewriting-based strategies, as well as tggési
that can effectively use and update indexes for this purpose

. We describe the architecture of the Metadata Management
System (MMS) we have prototyped. We experimentally
evaluate the performance of MMS, and compare it with pre-
vious proposals for metadata management. Our results vali-
date the generality and practicality of our uniform apptoac
to metadata management.

The structure of the paper is as follows. Section 2 providema
ning example that identifies the issues and illustrates olutien.
Section 3 defines the semantics of query expressions asala&sv
in relational tables, and their use in query conditions. tiact
describes how attributes of this type can be implementetesi-
isting relational database technology. Finally, Sectioorésents
experimental results to validate our methodology.

2. ILLUSTRATIVE EXAMPLE

We describe in this section a realistic example that ilatsts the
need for a uniform way of managing different kinds of metadat
and their associations to data, and also illustrates outisaol

ExampPLE 2.1. Consider acommunications company database
with the tableCustomers shown in Figure 1. The table contains
information about the phone line8HoneLine) of the customers
(Name), their location f.oc), whether a customer is a business or
a residenceType) and the circuit ¢ircuitID) used by the phone
line. The contents of the table are generated by integratiata
from a number of physically distributed sources. When aakést
is detected in the table, it is important to know its originan
der to correct it. To make this information available to theer
the data in theCustomers table needs to be annotated with its
provenance information. This includes the origin databaaee
(Source), its IP address 1P), and the communication protocol
used to access iPfotocol). One way to achieve this is to al-
ter the tableCustomers by adding three new columns for each of
its attributes [4]. Such a solution may affect the way ergtppli-
cations use the table, may degrade performance, or may ot ev
be implementable due to lack of authorization for such a gean

An alternative solution is to to store the provenance infarm
tion in a separate tablePfrovenance) as illustrated in Figure 1.

[BCT,NJDB, 147.52.7.8, http] in Provenance would indicate that
theBCT customer data tuple was obtained from M®B source.

This modeling approach has two main drawbacks. First, it has
a lot of information repetition. Assume that it has been eese
that all the New Jersey customers originate from the same dat
source. To record that, a tuple like the one just mentiondtl wi
have to be repeated in tablrovenance for every New Jersey
customer. The second drawback is that this mechanism cdrenot
used to model the fact thatRrovenance tuple may not refer to
the wholeCustomers tuple but only to a subset of its attributes.

What we propose is to allow queries to be used as values in the
table columns. In particular, to have some columns recgrglirery
expressions used to intensionally describe data a metagdtais
associated to. To find whether a particular data value iscagsd
with a given (metadata) tuple, one only needs to check if &ta d
value is part of the relation described by the query expoessi

EXAMPLE 2.2. In the example database of Figure 1, column
Rf1 of tableProvenance contains queries instead of atomic val-
ues. The first tuple with queryl in columnRf1 intensionally
describes that the provenance of all the customers withtioca
'NJ’ is the NJDB data source. Furthermore, through the attributes
of its select clause, it specifies that this is true only for attributes
Name, Type andPhoneLine. It states nothing about attributésc
and CircuitID. In a similar fashion, the second tuple specifies
that data source '3State’ is the origin of thec, PhoneLine and
CircuitID values of all the businessistomers.

ExamMPLE 2.3. The data in tabl&€ustomers often needs to be
verified for their consistency. This is common practice igda
database applications where errors appear frequently [B].the
current application, this is done by a number of technicifosn
various companies. Not all technicians are qualified to fyette
correctness of every data element in thestomers table. There
are certain rules that govern this qualification. For examphny
CIScO technician can verify that the circuit id recorded in the aat
base for any residential customer is correct, algtizon techni-
cian can verify the correctness of the recorded phone nuraber
circuit id (or their association) of any business custonagr any
AT&T technician can verify the correctness of the phone number of



any customer. The owner of the database would like to anathat
data in theCustomers table with the technicians that are eligible
for performing the verification task, so that given some dath
ues, it is easy to find who can be called to perform the verifinat

To do that, the technician information is recorded in a neviada
base tableTechnicians. The relationship between technicians
and customers is modeled through a new tabiewith columns

Qc and Qt, both containing queries as values. Their contents are
presented in Figure 1. The tuples in the taklemodel these rules.

With the proposed mechanism, one can easily introduce new

metadata on top of other existing metadata. It is only a matfte
creation of a new table and of specifying the right queriesads
ues in one of its columns. Also, different metadata tuplethe
same metadata table can refer to different data or metaalaitest
These are important features since the distinction betwatmnand
metadata is usually blurred. The same piece of informatian be
viewed as data by one application and as metadata by another.

EXAMPLE 2.4. Suppose that a set of security policies need to
be specified for some of the data. For simplicity, assumetkteste
policies include only the group of users who can access theaat
data. The system administrator would like to annotate bbth t
Customers and Provenance tables with the access permissions
information. To achieve it, she creates a nRetmissions table
as illustrated in Figure 1. The first tuple of that table, thgh query
q11 Stored as a value in columit2, indicates that records in the
Provenance table whose IP is in the 147.* domain can be accessed
only by an administrator. The second tuple, through qugsy
indicates that thélame field in theCustomers table with location
'NY’ can be accessed by a guest user.

It is also important to note that through the proposed madeli
of metadata information as data, and of the associationgeleet
tables through attributes with queries as values, metadatéave
any complex structure. In particular, a piece of metaddtaina-
tion may have multiple columns with different types.

3. QUERIESASDATA VALUES

This section formally defines the semantics and the use af/que
expressions as data values and the operators on them.

3.1 Quey-Types

The adopted type system is the one of the relational model ex-

tended with a new user defined atomic type cattetype. Q-types
provide the means to store queries as values in relatiobbsta
in a fashion similar to INGRES [23] or Meta-SQL [9]. User de-
fined types are used the same way any other primitive atome ty
is used. The ability to define and use such types is part of @le S
Standard and is currently supported by most commerciabdata
management systems. A value of tyReype, referred to aQ-
value, is a relational query expression.

To be able to dynamically execute queries stored as values, w
assume the existence of a functiesul whose role is to evaluate
a query expression that is provided to it as argument. Horveve
in contrast to other approaches that use query expresssodata
values [23, 18], we dmot propose to extend relational algebra to
include this function as an operator. Such an extensiondvoave
two major implications. The first is that it would have requirthe
use of a nested relational model, instead of the simpler fitat (
normal form) relational model. If, for instanceyal was part of
the extended relational algebra, applying it oQdype column
would have returned a relation in which the contents of tlwdt c
umn would have been relations, i.e., the result would haen lze

R2

R2

Figure2: Q-typejoins

non-first normal form relation. The second disadvantagbasit
would have created results with an unspecified schema. rBiffe
Q-values have query expressions that can return differembeus
and types of attributes. Evaluating tQetype column would have
resulted in multiple non union-compatible relations.

ExampLE 3.1. Consider the quergelect * from Provenance
applied on the database instance of Figure 1. If the Query col
umnR£1 is evaluated prior to retrieval, the result will be a relatio
with the last 3 attributes dfrovenance table and the attributes re-
turned by the execution of the query in colurfn. Queriesg; and
g2 are not union-compatible (they have differ@atect clauses).
Due to this, in the execution of quesgiect * from Provenance,
if an unnest operation is applied on the returned result tiela of
queriesq: and ¢z, the final result will have tuples with different
number and kind of attributes, hence, it would not be a refati

The onlyadditional functionality that we need is a new kind of
predicate (i.e., conditional expression) that makes ugbefval
function. Such a predicate can be a parameter of the stangard
erators of relational algebra, including selection and,jgielding
functionality that can effectively use-values for associating meta-
data tables with data (or other metadata) tables, as dedan#xt.

The functionality described here can also be achieved in the
nested relational model, where an entire relation is staseglvalue
of an attribute. That model is much more powerful but, unfort
nately, its richer functionality comes with a much highestcdur
goal is to achieve what we want with minimal cost. We chose to
implement our solution to the relational model that curdgedom-
inates the commercial DBMS world.

3.2 Sdectionson Q-values

Although for storage and retrieval purposgsype column con-
tents are viewed as atomic types, for comparison purposes, w
would like to viewQ-values as relations. SinceQavalue is noth-
ing more than an intensional description of a virtual relatithe
functionality needed is the one that allows checking whetee-
tain values exist in the relation described b@-aalue. If they do,
it is said that theQ-valuereferenceghese values.

DEFINITION 3.2. For a relation R with a Q-type columnQ,
let ¢t be a tuple of that relation and the value of that tuple on
column@. Assume thatl is the set of attributes of the result rela-
tion eval(q). If v1,...,v, are atomic values and\,, ..., A, are
attribute names, expressidi.Q[Ax, ..., A,]=[v1, ..., v,] eval-
uates to true forR.QQ=gq if the following conditions are satisfied.

1. Vi=1.n A;eA, and
2. 3t'e€eval(q) such thatt'[A;] = v, Vi = 1..n.

ExAmMPLE 3.3. Assume that a data administrator would like to
know what data sources are related to customer 'AFLAC’. This



translates to selecting from tifeovenance table those tuples hav-
ing aQ-value in attributeRf1 that referencefiame and that name
is'AFLAC'.

This can be expressed as:

select distinct p.Source from Provenance p
where p.Rf1[Name| = [AFLAC’|.

Note that the semantics of the select operation have nogeldan
The only new part is the introduction of the=" conditional ex-
pression (predicate) for values of ty@e The way this condition
is evaluated is a topic of a subsequent section. The synbbis*
used instead of “=" to emphasize the different predicate.

Another point worth clarifying is tha®-values can specify mul-
tiple conditions on multiple attributes. Our examples aptlsim-
ple for expository purposes.

3.3 JoinsUsing a Q-value

The valuesvy, ..., v, in Definition 3.2 can be either constant
values as is the case in Example 3.3, or relational atomioesxp
sions that take values during query evaluation. The akitityse
such expressions provides the means to form joins that aedba
on Q-type columns, allowing tables representing metadata tsbe
sociated to the data tables.

ExAamPLE 3.4. A data administrator has discovered that in the
database in Figure 1 the customer names starting with “A'laie
the format policy and would like to know the source from whieey
originate. She knows that the provenance information igestin
theProvenance table where attribut®f 1 specifies the association
between the data and the metadata. She issues the followany:q

select distinct p.Source from Customers c, Provenance p
where p.Rf1[Name] =[c.Name] and c.Name LIKE 'A%’

What the query does is to select all the customers whose rante s
with letter “A”. For every such tuplec it checks if there is a tu-
ple p in Provenance with a Q-valueq in p.Rf1 such that relation
eval(q) has an attributeName and there is at least one tuple in it
with the value in columiame equal to the value of.Name. If yes,
then tuples: andp pair up. The answer of the above query on the
instance of Figure 1 is the tup[&iJDB'].

Note again that this has the same semantics as the regular SQL

join operator (only the join condition is different sinceistbased
on aQ-type column). The result of its execution if Heéect clause
wasselect “*”, would consist of the attributes o€ustomers con-
catenated to the attributes ®frovenance. TheQ-type attribute
values will be the query expression presented as a string.

Figure 2 provides a visual explanation of when a tuple in one
relation R, can form a join with tuples in a relatio®; when
the join is based on itQ-type column Q and the set of attributes
X = {Xi,...,X,} of Ri. This is represented through the
condition R2.Q[A1, ..., Ax]=[R1.X1, ..., Ri1.X,]. The shaded
square represents the result relatiof eval(q) wheregq is the
value of columni z, [Q] of a tuplet r, of relationR,. Atupletr,
of Ry pairs up with tuplée r, if all the attributes inX also exist in
S, and there is at least one tupleShwith which ¢z, agrees on alll
the attributes inX'. Those tuples oR; that will join with tupletr,
are illustrated inR; by the thick horizontal lines.

EXAMPLE 3.5. The data administrator wants to find the names
of the technicians who can verify the consistency of theuitird
of New Jersey business customers. To determine that, sbekis |
ing for theTechnicians annotations that have been placed over
New Jersey business custongetrcuitID numbers. The associa-
tion between th€ustomers data and itSTechnicians metadata

information is done through a many-to-many relationshigplin
mented by tabl&J. Note that in contrast to traditional join ap-
proaches, there are no common attributes betwekQustomers,
and Technicians. The join is achieved through the intensional
description of the queries stored in the t@etype columns of table
XJ. First, a query is constructed to retrieve the New Jerseyrass
customers.

select * from Customersc
where Loc="NJ' and ¢.Type="business’

It is then enhanced to also retrieve the tuples of takle
that contain some intensional reference to the circuit ifishese
Customers. This is achieved through a join between thealues
in attribute Qc and the attributeCircuitID of Customers. The
query becomes:

select * from Customers c,XJ j

where c.Loc='NJ’ and c.Type="business’ and
j.Qc[CircuitID]=[c.CircuitID]

From the tuples that appear ixJ, the first is for residential cus-
tomers, so it cannot satisfy the query specifications. Tine: tilnple
does not mentio@ircuitID in its select clause, so it cannot sat-
isfy the query specifications either. The second tupleJodvill
form a join pair with everyCustomers tuple that agrees on the
CircuitID attribute value with at least one tuple in the evaluation
of the queryca.

The result of the join betweelustomers andXJ will also have
to be associated with thBechnicians tuples. This is done in a
similar way through a join on colum@t of XJ and the attributes
of Technicians. The final query is:

select t.Name from Customers c, XJ j, Technicians ¢

where c.Loc='NJ' and c.Type="business’and
j-Qc[CircuitID]=[c.CircuitID] and
j.Qt[Name|=[t.Name]

If the administrator was interested in the names of the techn
cians that can verifgitherthe phone and the circuit id of business
customers, then the final query would have been:

select t.Name from Customers c, XJ j, Technicians ¢
where c.Loc='NJ’ and ¢.Type="business’and
(j.Qc[PhoneLine|=[c.PhoneLine]| or
j.Qc[CircuitID]=[c.CircuitID])
and j.Qt[Name|=[t.Name]

In this case, both the second and the third tuplegbfvould
have been relevant. If the administrator was interesteceahnmi-
cians that can verifpoththe phone and the circuit id, then the final
query would have been:
select t.Name from Customers c¢,XJ j, Technicianst
where c.Loc="NJ’ and c.Type="business’and

j.Qc[PhoneLine, CircuitID|=[c.PhonelLine, c.CircuitID]
and j.Qt[Name]=[t.Name]

which is not equivalent to the query:

select t.Name from Customers c, XJ j, Technicians ¢
where c.Loc='NJ’ and c.Type="business’and
j.Qc[PhonelLine]=[c.PhoneLine] and
j-Qc[CircuitID]=[c.CircuitID]
and j.Qt[Name]=[t.Name]

This is because, in principlelifferenttuples in the evaluation of
a Q-value query expression can satisfy the two conditionetrby
theand, while in the former query theametuple in the evaluation
of theQ-value query expression has to satisfy the joint condition o
phone and circuit id.



THEOREM 3.6. Given aQ-valueq, theequivalent classf ¢ is
the set ofQ values whose query is equivalent to the query.dfhe
results of selections and joins are not affected by the uskffef-

one wants to guarantee is their syntactic correctnessa8ymtor-
rectness can be checked at the time of the value insertiodifim
cation through a function that plays a role similar to theakheon-

entQ-values assuming that they all belong to the same equivalent straints defined on relational tables. The function can aelsxk

class.

To realize why this is true one needs to observe that sefectio

for possible recursions.
A related issue is what happens when schemas are altered, be-
cause certain queries of the existiQgvalues may become incon-

and joins onQ-type attributes are based on the data instances of the sistent. Mechanisms similar to those used for views whemthe

relations generated by the evaluation of ¢ealues. Thus, replac-
ing aQ-value with an equivalent one, will not affect any query that
is based on thap-value. The same applies if a tupleontaining a
Q-valueg is replaced by a set of tuples that differ fraranly on the
Q-type attribute and the union of the evaluation of tt@ivalues is
equal to the evaluation a@f.

3.4 JoinsBetween Q-values

Joins can also be performed Qrtype columns of different rela-
tions, providing the ability to check for the existence ofoammon
tuple in the result relations of the evaluation of their exgjve Q-
values.

DEFINITION 3.7. Let t1 (t2) denote a tuple of relationR,
(respectiveR>), with a Q-type attribute@: (Q2), and A; (As2)
be the set of attributes in the result relation ebal(t1[Q1])
(eval(t2[Q2])). If A1,..., Ay, Al, ..., Al are attribute names,
expressiont1.Q1[Ax, ..., An]=t2.Q2[A], ..., A}] evaluates to
true if

1.Vi=1.n A;eA; andAjeA, , and

2. 3t'ceval (t1[Q1]), Tt €eval(t2[Q2]), such thatt'[A;] =
t"[Af], Vi = 1..n.

ExAMPLE 3.8. Assume that one would like to know which data
sources have contributed to tuples that have the seie@elLine
as tuples referenced by tlNgDB source. This can be expressed as:

select
where

p2.* from Provenance pl, p2
pl.Source="NJDB' and

pl.Rf1[PhoneLine| =p2.Rf1[PhonelLine]

The answer to this query will include both tuples of the
Provenance table. In particular, the second tuple will be included
sinceq mention®honelLine inits select clause, and bothval(g1)
and eval(q2) reference commoBustomers tuples.

3.5 Discussions

Using Catalog Tables: One of the issues that we have not explic-
itly discussed yet is how one can know which are the rightembl
to join. How can one know that the information stored in a ffiec
table is metadata information of another, and how to know ¢ha
join on a specifioQ-type attribute makes sense. This question is
no different from the question of finding the right join paihsa
relational schema. Recall that the relational model do¢slisal-
low joins that are based on any type-compatible attribesn if
they do not necessarily make semantic sense. It is up to #re us
to identify the right semantics either with external knoside or by
looking at schema constraints like key/foreign key relagttips. In

a similar fashion, it is assumed that the catalog tables atabdise
management system record tQetype attributes that exist in the
database. By querying it, one can find what parts of what $cdole
referenced by-values to form meaningful joins.

Syntactic Correctness. Since the query expressions @rvalues
may have to be executed at run time, a fundamental requitemen

derlying schema is altered [20, 25] can be used to deal wébeth
cases.

Dynamic vs Static Associations: Q-values naturally suppory-
namic associations. As such, no special care needs to be taken
when the data is updated. Consider, for instance, a datuttipht
satisfies the conditions of the query expression Qfaalueq in a
metadata tuple,,. Naturally, this means that,, is associated to

t. Now, assume thatis modified. If its modified values continue
to satisfy the conditions of, ¢ will remain associated te,,, but

if not, it will not. If another tuplet’ that was not initially associ-
ated tot,,, is modified and its new values are such that they satisfy
the conditions ofy, thent’ will become automatically associated
to t,,. This helps having metadata with generic references tq data
independently of the current database instance. In Figufier in-
stance, the first tuple of tabkrovenance is meant to be associated
to any tuple of customers with location 'NJ’, that existsnway ex-

ist in the future, in the database. This form of dynamic bé&ras

also found in views where the view query specifies certairdcon
tions and at any point in time, its instance depends on thearnos

of the base tables.

An alternative semantics is the one in which a metadata éntry
associated with certain data tuples and only with them. fit@ans
that if at a later time new data tuples are added, even if thagfg
the conditions of the&y-value query, they will not be considered
associated to the metadata tuple. To support this kirstatic se-
mantics, the system needs to “remember” the data with which a
metadata entry was initially associated. In our system hyoae-
mantics is the default, but static semantics is also supgort

4. IMPLEMENTING QUERY-TYPES

This section describes ho@-types can be implemented in a
database management system in order to provide the aloilej t
ficiently and effectively manage data, metadata and thencas-
tions in a unified way. A highlight of this approach is thatuilds
on existing relational database technology, that makessgiple to
build on top of modern commercial database managemeninsyste

First, we present a pure rewriting-based strategy. Thergeve
scribe how index structures on thetype attributes, referred to as
Q-indexes, can be used to speed up query evaluation.

41 Storage

Our system consists of two main components. One is a set of
auxiliary tables that are used to facilitate query ansvgeiimwolv-
ing theQ-values. These tables can be considered part of the cata-
log schema, thus they do not appear as part of the databasmach
presented to the user. Query answering is performed by tunde
component which is a query preprocessor. Its role is to ifjethte
parts of the query that refer to-type columns and rewrite them to
expressions that use the auxiliary tables. The outcomeeopité-
processor is a query in standard SQL that can be executeceby th
database management system. The result of the query idiamela
as expectedQ-type column values are presented as strings by de-
fault, but additional functions can be defined to transfonemnt to
other forms.



QTypeValues AttrThl

tion S.a[A1, ..., An] = [v1, ..., v,] are computed, and for each one

Slld ;EL’:‘,%TI;CE ;C{?'i'\'ame ﬂgl quld ﬁgg‘ _— of them, it is checked whether the rest of the conditions ifipec
g2 |Provenance |Rf1 1011 q% gﬁgieLine in the user query are also satisfied. This approach is pidéera
32 Loc if the number ofQ-values that pass the first test and the variable
g2 |PhoneLine bindings that satisfy conditio$.a[A1, ..., An] = [v1,...,vn] IS
92 |CircuitID much smaller than those bindings that satisfy the otheritiond

that exist in the user query.

Figure 3: Auxiliary tablesfor Q-values ExampPLE 4.1. Consider the query
select p.Source from Customers c, Provenance p
where p.Rf1[Name]=[c.Name] and c.Name LIKE 'A%’
Afirst step in supporting queries as values is the introduadf a
new user-defined type call&d The type is defined as an extension
of the string atomic type, in order to store the query expoess
A critical task for the query processing system is to be able t
identify and use in a declarative fashion the attributeshefrela-
tions eval(q), i..e., the relations generated by the evaluatioq of the columnName. This is done either by analyzing iéslect clause,
query expressions of thg-values. In current DBMSs, the attribute or by performing a lookup on tablettrThl where this informa-
names of a table can be turned into values of a column (so thatyjo, has heen recorded. If the-value fails to pass the test, the
the relational operators can be applied on them) by usingtite pair of Customers and Provenance tuple is rejected. If not, the

I?IVOLoper:ator [71. L_Jnfortunatfel_y, UNhPI\éOT gvorks obr:ly 0”";9 query expression is evaluated, and it is checked whethéreime:-
tions that the DBMS is aware of, i.e., the database tablege3he g s vojation there is a tuple with a valuein columnName equal

attrlkl)utes 'Ql the—ﬂ‘ﬁ;f\l/%_fje of theQB/alues da][e nc;}t reco_:_ded in the to the value in thelame attribute of theCustomers tuple (this is
ck?.tal.og. ta. es, i car;)rllot € use dor tdem.b oloyercome the value to which expressierame evaluates). If this test is also
this limitation, twio auxiliary tables are introduced, waasle Is to passed the value of attribus»urce is reported to the user. The

record that informationQTypeValues andAttrTbl. drawback here is that th@-value expressions will have to be eval-
The QTypeValues table associates a unique identifier for e@eh uated multiple times
value, which is identified using a combination of the (metajfla The second approach suggests to evaluate each query that ap-

table name, the column name, and record identifier of thetupl oo o in colummrs1 first, and check whether it has an attribute
in which theQ-value appears. For eachvalue that exists inthe . in its result set. For those that do, select the values that

database, and for each attribute name of its virtual relaticere appear in that attribute and build a set of names. Then, the re
is one tuple in tablettrTbl, which contains the unique identifier mainder of the query can be evaluated where instead of dondit
of the Q-type value (from the&dTypeValues table), and records an ) g4 yape] = [c.Name], it is now required that the value to which
attribute name of its virtual relation. Figure 3 illustrateart of expressiom.Name evaluates exists in the set of names that was con-
the contents of the auxiliary tabl@sTypeValues andAttrThl, that structed. The drawback here is that the set of names may bg rea
record the information for the two tuples of tatHeovenance as large, but only a few satisfy the condition about startinghwil
described in Figure 1. which means that many query expression evaluations coud ha

4.2 Query Evaluation: Alternatives been avoided.

Having information about theval(q) relation attributes for the Clearly there is no best approach to follow always. Each time
query expression of everyQ-value recorded, user queries involv- it depends on the specific query that is executed. The deaisio
ing (the newly introduced) conditions aR-type columns can be  what to follow cannot be made without some data statistkss i
evaluated. There are different strategies that can benfetlpeach those kept by the database management system. Unfortynatel
one with its own advantages and disadvantages. Assumetbata  these statistics are not always available to external egipdins. For

introduced in Example 3.4. The first approach suggests toregn
the condition orp.Rf1, find all the customers with a name starting
with A and make all the possible pairs with theovenance tuples.
For each such pair, take th@-value in columrRf 1 of Provenance.
Test whether the evaluation of that query would have coathin

query has a condition of the fori$l.a[A, ..., An] = [v1, ..., vn]. that, we will try to rewrite the query in such a way that theadat
One approach is to ignore the condition initially and eveduthe base engine will be able to take the right decisions baset alaia
rest of the query as usual. Then for every variable bindireg th  statistics information.

is found to be satisfactory, find th@-value to which expression The main issue in this process is that the expressions afthe
S.a evaluates, the constant values to which expressions., v, values are not part of the query provided by the user or thicapp
evaluate, and test whether the conditions in Definition 8e2sat- tion. They are “hidden” as values in the database. Thus, dkeyq
isfied. The drawback of this approach is that the conditidri3es engine cannot use them when deciding the evaluation anaizgti
finition 3.2 will have to be checked for every variable birgisat- tion strategy. To overcome this issue, we introduce a pogssing
isfying the specifications of the remaining part of the usesry. step that has two main goals.

Checking these conditions means evaluating the query ssipres The first goal is to check the satisfaction of the first conditin

of the Q-values each time. Thus, this approach is preferable in Definition 3.2. As explained, such a check could not be peréat
the case where the variable bindings found to satisfy theaem by the query engine since the attributes are not explici#iytioned
ing part of the user query are highly selective compared & th inthe user query but are encoded in shklect clause of the-value
bindings and the number @-type values that satisfy condition  expressions. This preprocessing step can be seen as an ONPIV
S.alAy, ..., An] = [v1, ..., vn). operation followed by a relational selection on the attieuames.
An alternative approach is to start from condition The difference is that instead of being applied on the neiteed

S.a[A1, ..., An] = [v1, ..., vn] by first finding all theQ-values in tables of the database, it is applied on the virtual relatspecified
column S.a whose query expressiarlect clause specifieeach by the query expressions in tiegvalues.

attribute name in the set, ..., A,. For eachQ-value that passes The second goal is to expose these query expressions @f-the
this first test, all the variable bindings, ..., v, that satisfy condi- type values to the database optimization engine, by makiamt




part of the query that the user or the application has poséat T
way, the query optimizer will be able to balance all the festnd,
based on the information that the DBMS has about data distrib
tions and value cardinalities, it will take the most promgsdeci-
sion for the task at hand.

Once this preprocessing step is done, theondition can be
removed from the modified user query expression. A detaiéed d
scription of how this is achieved is described next.

4.3 Query Rewriting: Using Union
Consider a user query of the form
Qu: select expl,..,expy from RY, ..., R}, T
where cond} and ... and cond% and
T.a[A1,...,An] = [e1, ..., en].

Step 1: The first step is to identify which of all th@-values in
attributeT.a have attributes named;, ..., A,, in the relation ob-
tained by the evaluation of their query expression. ThisBeved
through the following query on the auxiliary tabl@strTbl and
QTypeValues:

select tv.RId
from QTypeValues tv, AttrTbl aty, ..., AttrTbl at,,
where tv.TblName='7T" and tv.ColName='a’

m tv.Qid=at1.Qid and ati.AttrName="A;’
and tv.Qid=at>.Qid and ato.AttrName='Ay’

and tv.Qid=at,.Qid and at, AttrName='A,’

Step 2: From all theQ-values identified in Step 1, only those whose
query evaluation has a tuple with valag in attribute 4;, ¥Vj =
1..n, have to be kept.

Let ¢; be aQ-value identified through the first step.
A new queryQ); is constructed as follows:
Q;: select *
from (¢;)) ASR
where R.A1=e1 m m R.An=en

This query answers the question of whetbedl/(g;) has a tuple
with a valuee; in attribute A;, wherej ranges betweeh andn.
If the result is an empty seQ-valueq; does not satisfy condition
T.a[A4, ..., An] = [e1, ..., en]. Since we are not interested in the
actual results of querg); but only in finding whether it returns an
empty set or not, theelect clause can be rewritten telect TOP
1°'1". The constant value '1’ is a random constant and the "TIOP
clause instructs the query processor to return only thetfipde in
the result set with some potential saving in execution time.
Step 3: Once the set of querie9; have been constructed for the
Q-type values returned during Step 1, conditiBa[A4, ..., A,] =
le1, ..., en] in the user query can be replaced by a condition that
tests whether th@-value of attributél".« is one of those computed
during Step 1, and if so, that its respective qu@ryreturns a non-
empty result set. To do that, we exploit theion feature of SQL
queries. After the replacement of conditiGha[A, ..., A,] =
le1, ..., en], queryQ, becomes:

select expy,....expy from RY, W RET (1) AS R
where cond? and ... and cond% and

T.RId=ridy w (R.A1:61 m w R.Anzen)
Union
select expy,...,expy from RY, ..., R}, T, (¢2) ASR
where cond} and ...wcond? and

T.RId=rid> M (R.Al =e1 m M R.Anzen)
Union
Union
select expy,....expy from RY, o RE,T, () ASR
where cond? and ... and cond% and

T.RId=rid; and (R.A1=e; and ... and R.A,=ey)

To avoid the nested queries, the above expression can bisteewr
by embedding thérom and where clause of they; query in the
respective clauses of the union query component they appear
For instance, if query; is:

select e; AS Ap, e, AS Ao, ...,e}, AS Ay, €] AS A,

from Si,...,Ss

where cond; and ... and cond;

the last component of the union expression can become:
select expy,...,expy from RY, o RE, T, S, 0,8
where cond? and ... and cond% and
T.RId=rid; and (¢]=e1 and ... and e/, =e,) and
condy and ... and condy

All the operators in the rewritten query are standard SQL-ope
ators, thus, it can now be sent to the database managemésrnsys
for execution. Furthermore, since the query expressiprs the
Q-values are explicitly mentioned in the query, the optimizél
be able to take them into consideration, and come up withélsé b
evaluation strategy.

EXAMPLE 4.2. The user query

select p.Source from Customers ¢, Provenance p

where p.Rf1[PhoneLine]=[c.PhoneLine]
and c.Name LIKE 'A%’

will get the form:

select p.Source

from Customers c, Provenance p, Customers c2

wherec.Name LIKE 'A%’ and p.RId=r1 and
c2.Loc='NJ" and c2.PhoneLine=c.PhoneLine

Union

select p.Source

from Customers ¢, Provenance p, Customers c2

wherec.Name LIKE 'A%’ and p.RId=r2 and
c2.Type="business’and ¢2.PhoneLine=c.PhoneLine

Union

The... symbol in the query denotes additional cases that may exist
due to otherQ-values of attributeRf1 in table Provenance that

may qualify but do not appear in the portion of the relatidost
trated in Figure 1. Note also that due to Step 1, the aboveigser
are guaranteed to be union compatible.

An alternative approach is to define virtual views based en th
expressions of ever@-value that exists in the database. The rewrit-
ing can then refer to the virtual relation described by thealue
through the respective view. We have tried that approachweut
found it having a very poor performance, which may be duego th
way the query optimizer was handling the virtual views, sodize
not consider this approach further.

4.4 Query-Indexes

Query evaluation based on the query rewriting approach de-
scribed in the previous section is expected to be efficiemnithe
rewritten query has only a few disjuncts, i.e., when the nemnd$
Q-type values in attributé.a that are identified in Step 1 is small.

If the metadata table contains a large numbeRefalues, all of
which have attributes nameds, ..., A,, then each of thes@-
values would need to be evaluated, evenif. . ., e, ] were a tuple
of constants. To further prune out “irrelevai@“values in attribute
T.a, the values present in the relations obtained by evaludtieg
queries would need to be used.

In this section, we present such an approach based on nmaintai
ing indexes on th@-values, which we refer to a&indexes, for this
purpose. OuR-indexes can be easily realized using relational ta-
bles and B-tree index structures available in commerclatiomal
database management systems. Such an index can complement
other approaches that use queries as values [23] since headpn
them perform their functionality more efficiently.



4.4.1 Indexing Alternatives

Clearly, the best possible index from the perspective of-min
imizing the query execution time would be an index that given
any n-tuple of attribute§ A4, ..., A,] and anyn-tuple of values
[v1,...,v,] would precisely identify th&-values in attributd.a
that satisfy the conditions of Definition 3.2. We implemehseich
an index and found that it is unlikely to be feasible in preeti
since it would need to essentially index the “union” of thiatiens
obtained by evaluating all the queries in attribiite.

A more space-efficient alternative is to build multiple $engt-
tributeQ-indexes that given any attribute and any value; would
precisely identify the-values in attributd’.a that satisfy the con-
ditions of Definition 3.2. Such an approach has both advastag
and disadvantages.

The key disadvantage is that given antuple of attributes
[A4,...,A,] and ann-tuple of valuesfvs,...,v,], one cannot
precisely determine the desir@dvalues, using the single attribute
Q-indexes. Intuitively, the reason is that even if eachppeared in
attribute A; of a queryg’s relation R,, they may not all be present
in thesametuple of R,,.

However, the single attribut@-indexes can be used as effiec-
tive filter, since they may have false positives whern> 1, but
they do not have false negatives. Foel there are neither false
positives nor false negatives.

The key advantages of maintaining multiple single attebmt
indexes instead of the covering index on all attributesleeesignif-
icantly lower space cost, and the consequently lower cosbof
structing and maintaining such indexes. Intuitively, teason is
that even if a value; appears in attributel; in multiple tuples of
a queryg’s relation R, the pair(v;, ¢) need be indexed only once
in the single attribut@-index of A;.

4.4.2 Realizing Single Attribute Query-Indexes

A simple and elegant way of implementing a single attrikte
index on attributed;, in a commercial database system, is to (i) ma-
terialize a 3-ary relational tableal, gid, count), where the mean-
ing of atuple(v, g, ) in this table is that value appears in attribute
A; of ¢ different tuples of query’s relation R, (ii) make the pair
<wal, gid> a key for that table, and (iii) create a B-tree index on
val. Thecount field is present merely to efficiently maintain this
index under insertions, deletions and modifications to teekia-
bles used in the definitions of the metadata queries.

EXAMPLE 4.3. The tablelTNameand ITType in Figure 4 il-
lustrate a fraction of a realization of a single-attributedex for the
attributesName andType, respectively, of the database instance in
Figure 1. The interesting observation is that sinceal, qid> is
a key, it is likely to have a unique index. IfGatype join involves
only one attribute (case=1 mentioned in section 4.4.1), an in-
telligent query optimizer can implement the join using theeix
without having to access the data table.

4.4.3 Updating Single Attribute Query-Indexes

For theQ-index to be useful, it would need to be efficiently up-
datable as data and metadata entries are inserted, defetaga
dated in the database. We next describe how this can be adhiev

Suppose that the various queries in type attributel’.a are
select-project queries over single tables, and tibiere clauses
are conjunctions of conditions of the forR.A, < v, and
R.A,, > vm, Wherev, andwv,, are constants. Then, a con-
dition of the form R.Ax < v present in thewhere clause
of query ¢, can be represented in a relational table having the

ITName
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Figure4: RDBM S Q-index realization.
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schemalL EQ(relation, attribute, value, queryid). Similarly,
conditions of the formR.A,, > v, can be represented in a
relational tableGEQ with the same schema. When a new tu-
ple (t1,...,tn) is inserted in relationR(A,..., A,), one can
query the relation. EQ for tuples of the form{(R, A;,t¢,q)[t <
t;;1 < i < n} and the relationGEQ for tuples of the form
{(R, A, t,q)|t > ti;;1 < i < n}. Such tuples can be efficiently
identified using standard relational indexes such as Bstoeethe
concatenation of the first three attributeslafQ (or GEQ). A
queryq present in an identified tuple is clearpt affected by the
insertion, and can be eliminated. Any query that is not elated
has all the conditions in itahere clause satisfied by the newly
inserted tuple, thereby identifying the tuples that needbdan-
serted/modified in th@-index.

If a new tuple is inserted in a table withGtype column, the
query expression of th@-value for that column is evaluated. The
values of each attribute in the result relation are used tatgthe
respective tables of the-index. This is done by checking whether
there is an entry with the paiwalue, queryid) already in the in-
dex table. If yes, itgount value is increased by 1. Otherwise, a
new entry<value, queryid, 1> is inserted.

Note that using single attribute indexes does not meanhb&at-t
value queries have only one attribute. They may involve iplelt
attributes, but each index is on one attribute only.

The experimental section that follows will demonstrate st
nificant benefits obtained by usi@indexes.




5. EXPERIMENTAL EVALUATION

Our proposed framework has been implemented in a system
called MMS (Metadata Management System) [22] on top of a com-
mercial relational database management system. A numleseof
periments were conducted with three metrics in mind: thespa
usage, the update cost and the query execution time. Thksresu
of the experiments indicated thafi) Due to the intensional way
in which the metadata is associated with the data in MMS, aflot
repetition is avoided and the space usage of the metadateemas
low. (ii) In the absence of an@-index, updates to both metadata
and data entries are very cheap in MMS. MaintainingQhiedex
under updates adds additional cost, but is still cheaper éRest-
ing metadata management systems for updates on metaddts, wh
being more expensive for updates on the ddia) Query execu-
tion, in the absence of ang-index, is expensive in MMS, since
it involves the analysis and evaluation of eagfype query value.
However, the experiments indicate that the propogdddex can
not only significantly reduce the query execution time, buniany
cases offer much better performance than that offered gr etk
isting metadata management systems. This is analogous beth
efits provided by the use of indexes for SQL query evaluation.
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Figure6: Q-Index sizefor different footprints.

them so that only a portion of the data was associated to sate m
data. This was performed for portions of 5%, 25%, 50%, 75%, an
95%. For each one the size of the database was measuredz&he si
was measured both with and without tReéndex. The same infor-

The experiments were performed on a dataset obtained from amation was also encoded in separate databases using theiddond

real enterprise application having data about customiees;, pro-
visioned hardware, their billing information and the seevorders
that had been placed for them. On that data, we associatad mul
attribute metadata information.

For comparison purposes, we chose two recent annotation man
agement systems: DBNotes [4] and MONDRIAN [12], because
annotations are a generic and commonly used kind of metaldata
terms of semantics, in these systems the association hetivee
data and the annotation is explicit, and they cannot accatateo
future tuples. For fairness, we have ignored that factorninex-
periments in order to make sure that the expressive powektbka
systems is the same.

In DBNotes, every relational table column is associatedh it
second column in the same table that is used to hold the annota
tion. If a value in a tuple has more than one annotation astati
to it, then the tuple is recorded multiple times, once forgaano-
tation. Since our metadata information consists of mudtifglds,
to simulate this behavior in DBNotes, we had to associateemor
than one column to each attribute. Mondrian follows a simbat
more compact, approach. For each relation there is one eottra
umn that keeps the annotation, and also for each attribete ib
a shadow column of type bit that can get values 0 or 1, spegfyi
whether the annotation text refers to the respective atgibr not.
Again, due to the structured nature of our metadata, to sitathe
behavior in Mondrian, instead of one annotation column pblet
we had to have more. In our own approach, for each data table,
we had another table in which the metadata was recorded (lve wi
refer to these as “metadata” tables, as opposed to the “tidibe's
that contain the original data, although from the perspeadif the
MMS system any table can serve as a “data” or a “metadatag)abl
The metadata table hadatype column that was used to associate
each metadata tuple with a set of data tuples in a data tafde N
that in the extreme case where every tuple has a separaterfgnd
one) metadata annotation, all three approaches are cobfpara

For the experiments, we considered data tables of 5 millien t
ples and metadata tables of up to 500,000 tuples. Indexesused
in both Mondrian and DBNotes, as well as MMS.

5.1 Space Usage

First, we used all the data entries from the data tables amd fr
the 500,000 metadata entries we randomly selected a fnacfio

and the DBNotes schemes. The result sizes are all illustiate
Figure 5. The chart indicates that even when 95% of the dptagu
has been associated with metadata, the MMS approach rsalts
minor increase in database size. On the other hand, Mondndn
DBNotes indicate a substantial growth in size as the peagendf
the data bearing metadata gets larger. This is mainly beczfube
fact that in Mondrian and DBNotes the metadata informatias h
to be repeated for every tuple it is associated to. For the os
DBNotes in particular, it has to be repeated for every coluinis
associated to. In MMS, on the other hand, the annotationisext
stored only once in the metadata table, no matter how manhgstup
are associated to it, and most importantly, no additionfrma-
tion has to be stored in the data table itself. Furthermbeeuse of
the Q-index for theQ-type column in the metadata table results in
only a minor increase in the total database size, a costiudfsiet
by the huge benefit th@-index offers in terms of query execution
time, as we will see later.

The same experiment was repeated with double the number of
metadata entries that are associated to each data tupleeJiies
were similar to those in in Figure 5, but with increased défeces
between the approaches. In particular, the size increadddo-
drian and DBNotes was substantial since each data entryoHaal t
stored as many times as the number of metadata entries itssas a
ciated to, while with MMS only the metadata entries were dedb
along with the respectiv@-index entries.

To measure how the size of tlieindex structures are affected
by the characteristics of the data, we kept the size of thee fibaed
and we chose different footprint values. The footprint is thum-
ber of data tuples a metadata entry is associated to. Thisually
the number of tuples in the virtual relation specified by@ealue.
For each footprint value we generated metadata in a way g-a
cific portion of the data was associated to metadata. Figundi6
cates the change in size for the different cases. When thipriob
is larger, fewer metadata tuples are needed to cover a sppcifi
tion of the data, thus, th@-index size is smaller. Th@-index size
for the case of 0% is non-zero because the measurementésclud
the space allocated for tlgindex tables by the DBMS.

5.2 Update Cost

Here we investigate the cost of updating the various strastin
the presence of data associated with metadata. The sansetdda



Footprint [MMS[MMS Q-index[Mondrian [DBNotes
10 0.002 0.092 1.350] 0.650
100 0.002 0.075 1.340, 0.654
1000 0.002 0.122 1.617| 2.241]
10000 0.002 0.600 1.789 2.555
100000 | 0.002 3.514 12.049  5.945

Table2: Aver. metadata insertion time (in sec)

before was considered and a series of 2500 new metadatasentri
were inserted one after the other. The average time of peifigr
one such insertion was measured for each of the four diffengen
proaches that we are testing. The results are illustratddlire 2

for multiple such experiments with different footprintsin&e in
MMS the metadata are stored in a separate table from theatata,
the metadata entries are much fewer than the data, insesiere
extremely fast. For th@-indexed version of MMS, some extra
time is needed to update tlaeindex structures but it is still faster
than Mondrian and DBNotes.

Deletions were also tested on metadata. For Mondrian, D&Not
and the non-indexed version of MMS the performance is similar
to that of insertions. Th&-indexed version, on the other hand,
indicates a 30% speedup over the one required for insertion.

Insertions and Deletions were also tested for data enffasle 3
indicates the average time to delete a data tuple from a dhla. t
For Mondrian, DBNotes and the nag-indexed MMS this time is
affected by the size of the data table. Since MMS does nat siher
metadata along with the data, as Mondrian and DBNotes de; del
tion time is better. Th&-indexed version of MMS, as expected,
requires extra time in order to update thdndex structures. The
average time to execute a data insertion are analogous e tfo
data deletion for the same reasons.

5.3 Query Execution Time

The next set of experiments was performed in order to measure

the query execution time. The important factor studied was h
fast the join between data and metadata values can be pedorm

using theQ-values. As before, a database was considered with data

tables of 5 million tuples and metadata tables of variousssig to
500,000 tuples. The kind of queries that were performed therse
forming ajoin between the data and the metadata table bastbe o
Q-values. The queries were run on databases with diffeyeraiue
footprints. For larger footprints the metadata table estwere nat-
urally fewer (we kept only as many metadata entries as requo
ensure that every data entry had some metadata tuple assbocia
to it). The queries were performed on both théndexed and the
non-Q-indexed version of MMS, and their equivalent queries were
also run on the DBNotes and Mondrian databases. The resealts a
illustrated in Figure 7. Th@-indexed MMS version always signifi-
cantly outperforms the other approaches. Furthermoréesf®ot-
print value gets larger the execution time also gets sm@lace
there are fewer metadata entries). The mmdexed MMS (not
shown in Figure 7) had much larger execution times because fo
each distinc-value, its query had to be evaluated. Such an eval-
uation took an average of 3 secs @ewalue, but since there were
manyQ-values the overall time was that many times larger.

Metadata| MM S [MMSwith[Mondrian [DBNotes
Entries Q-index

500000 0.002 20.69 0.069 0.117]
50000 0.002 2.345 0.114 0.105
5000 0.002 0.869 0.109 0.100
500 0.002 0.192 0.160 0.064
50 0.002 0.076| 0.111 0.087

Table 3: Average data deletion time (in sec).
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Figure 7. Average query execution time.
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Figure8: Avg. metadata-query execution.

by Mondrian or DBNotes would first require knowledge of théeda
schema, but even if the schema is known, the performancévill
poor since data tables are usually huge. Figure 8 illustrtite
average execution time of such queries in all the four apgbres
evaluated here.

Another interesting feature of MMS is that it allows metadat
to be defined easily over other existing metadata. This regui
queries with multiple joins based atypes, which introduces the
need for the final experiment. In particular, we needed testiv

One of the unique features of MMS is that metadata can be gate how query execution time is affected by the numb&-tfpe

queried independently of the data it is associated to. Tosa
metadata of the same kind, say for instance, user commertis, t
all stored together in the same table independent of the fdata

based joins that exist in the query. We tried théndexed approach
for databases with different footprints and for differentmbers of
joins. We made sure that for the same database, the querés, e

which the comment was made. This permits a very compact stor- though they had different numbers of joins, all returnediltesof
age schema and allows queries of the form “What comments havethe same size (viz., 1). That way, the observed differencéisnie

been made so far mentioning circuit IDs?” to be efficiently an
swered. Answering these kinds of queries in the schemasdev

were exclusively due to the number of joins. The results kre i
lustrated in Table 4. Note that the query executions betviieen



Footprint
Joins [ 1000 | 10000 | 100000
1 0.35| 1.182 0.121
2 0.21| 1.767 0.431
3 0.28| 0.771 0.343
4 0.26 | 1.923 1.072

Table 4: Avg. Q-typejoin execution (in sec).

different databases are not to be compared since they Héaedt
results. The graph intends to provide some intuition of therg
executions within the same database. The conclusion igthbat
number ofQ-type based joins in a query is not a factor that dramat-
ically affects the query evaluation time.

6. CONCLUSION

There is a clear need to associate a variety of metadata with[15]

the underlying data, to understand, maintain, query, mategand
evolve databases. In this paper, we presented a simplentlep-
proach to uniformly model and query data and arbitrary regtad
The key intuitions are that: (1) the relational model augreénvith
queries as data values is a natural way to uniformly model, dait
bitrary metadata and their association, and (2) relatiop@ries
with a join mechanism augmented to permit matching of retesti
specified byQ-values, instead of only atomic values, is an elegant
way to uniformly query across data and metadata.

Our MMS system implements this approach, providing a mech-
anism for recording metadata into a database without hawing
alter existing tables. User queries are efficiently evaldiaising
Q-indexes. We experimentally evaluated the performancénef t
MMS system, in comparison with previous proposals (DBNotes
and MONDRIAN) for metadata management, and showed signif-
icant benefits both in terms of space usage and query executio
times. Our results validate the generality and practigalit our
uniform approach to metadata management.
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