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ABSTRACT
Our ability to collect data is rapidly surpassing our ability to store
it. As a result, organizations are faced with difficult decisions about
what data to retain, and in what form, in order to meet their busi-
ness goals while complying with storage restrictions. This is typ-
ically known as data reduction. This tutorial aims at introducing
researchers and practitioners to the topic, and provides a holistic
overview of the recent advancement in the field. It covers funda-
mental principles of data summarization, with a particular emphasis
on submodular algorithms, alongside a detailed discussion on the
limited existing data forgetting routines. It further underscores the
limitations of the data summarization paradigm by introducing the
concept of “data rotting” and illustrates the necessity of adopting
the new stack data reduction techniques: data forgetting routines.
Last, but not least, it discusses the challenges and open research
questions in this newly born field.
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1 RELEVANCE, TIMELINESS AND SCOPE
Over the past few years, we have witnessed an extraordinary data-
centered revolution in almost every facet of our lives. Massive vol-
umes of data are continuously collected, processed, integrated, and
analyzed, resulting in major advancements in fields like logistics,
manufacturing, medicine and science. Nonetheless, this revolution
encounters significant challenges, mainly due to the vast amount of
data generated worldwide, which threatens to surpass our current
storage capacity. To date, advances in storage technology have al-
lowed organizations to accumulate data with almost no restriction.
However, it is estimated that the size of the global datasphere (i.e.,
the digital universe) will surpass storage production by an order of
magnitude as soon as 2025 [32].

Uncontrolled data storage could compromise the privacy and
security of individuals, as recently pointed out by the General Data
Protection Regulation (GDPR) [11]. To mitigate this risk, the legisla-
tion grants any resident of a protected region the legal authority to
require a company to erase their personal data. The consequences
of uncontrolled data storage, however, extend beyond user secu-
rity and privacy concerns. Poor data management practice often
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results in dirty IT environments where redundant or obsolete data
gets accumulated. This not only consumes valuable storage space
but also jeopardizes the scalability of data retrieval processes and
knowledge discovery algorithms.

To effectively address the aforementioned challenges, data-driven
enterprises and research institutes are being forced to face the data
reduction challenge: retaining the information hidden in the data
while respecting regulatory, storage, and processing constraints [25].
Data reduction involves deciding what data to keep and in what
form, to comply with legal data regulations and storage restrictions,
while minimizing information loss. Storage constraints refer to
limitations on the amount of data that any specific institution can
store. Additionally, processing constraints pertain to the utilization
of data. Meeting processing constraints involves ensuring that data
is disposed in a manner that minimally impacts its future expected
usage. Furthermore, regulatory constraints simply dictate which
data must be retained or deleted within fixed time frames. Such
regulations should always be followed regardless of an institution’s
storage capabilities. Therefore, the algorithmic data reduction task
involves finding the portion of data that best meets the processing
constraints while fitting into the given storage space.

Due to the vast and ever-growing nature of big data, automating
data reduction becomes vital to avoid data-flooding and guarantee-
ing sustainable data management. Hence, there is an urgent need
to develop algorithms based on robust scientific foundations for
massive-scale data disposal. Embracing this algorithmic approach
to data disposal is crucial for effective knowledge retention and
to ensure the sustainability of the data-centered revolution that is
reshaping our lives. A common data reduction technique is data
summarization [16, 17, 21, 23], that aims to reduce big data by re-
placing it with more compact representations. Another technique
is data forgetting, that aims to reduce big data by removing data
records. The task can be found under different names, but the mo-
tivation behind the selection of this characterization will become
clear later-on.

This tutorial, aims at providing an overview of the state-of-the-
art in data reduction. It examines data summarization methods,
highlighting their shortcomings, and illustrates the need for data
forgetting, the emerging group of data reduction approaches. There
have been tutorials on data summarization in the past [16, 17, 21, 23].
However, since summarization is only a part of data reduction,
none of these works addresses the new full stack of data reduction,
specifically those under the “data forgetting” umbrella. The cur-
rent work covers this gap by being broader and going far beyond
data summarization. It focuses on data reduction (and specifically
on data forgetting) an area that is still in its infancy, aiming to
introduce researchers and practitioners to this new paradigm. The
presentations so far that are highly related and focused to data
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reduction are the recent keynotes talks by Tova Milo in VLDB’19 1,
DOLAP’24 2 and DASFAA’24 3, alongside our own course in the
ACM Summer school on Data Science4. The former were focusing
on the contributions of the specific research group, while the latter
was highly introductory, targeting mainly students and included a
hackathon-style lab.

2 CORE CONCEPTS
2.1 Data Summarization
A popular approach to data reduction is data summarization. A
summary of a dataset 𝐷 is a brief synopsis that has a modest size
compared to that of the latter. Summaries come in one of two flavors:
as subsets of 𝐷 , or as representative values that replace the original
data records. Further, summarization algorithms fall into one of
three categories: statistical [1, 4, 36], submodular [2, 3, 26–29], or
geometric [5, 6, 13, 31].

Statistical summarization routines rely on statistics to create sum-
maries. Popular approaches like aggregation, creating histograms,
or sampling, fall under this category. Aggregation [36] involves re-
placing the original dataset with an assembly of summary statistics.
That is, numerical constants that convey information about the
central tendency, dispersion or shape of the dataset’s distribution
(e.g. arithmetic mean, standard deviation, skewness or kurtosis). A
more intricate version of this very idea lies behind histograms [1],
which summarizes a dataset by splitting it along any attribute
(or attribute group) into a set of buckets. For each, a small set of
summary statistics that approximately represent the data in such
bucket is computed. Despite its cost-effectiveness, histogramming
and aggregation alone could lead to information loss. In fact, after
summarizing a dataset using these techniques, any query that aims
at retrieving specific datapoints will return an empty answer when
ran against the summary. Nonetheless, when combined with sam-
pling [4], powerful procedures have been developed for efficiently
computing approximate answers to complex queries over the re-
tained synopsis [30]. Sampling involves selecting a representative
subset from a given dataset via a stochastic mechanism. Notable
sampling techniques include: simple random, systematic, stratified,
and clustering/multistage sampling.

Contrary to statistical methods, submodular summarization [2, 3,
26–29] routines approach data reduction as a deterministic subset
selection exercise. Given a dataset 𝐷 , a set function 𝑓 : P(𝐷) ↦→ R
which measures the amount of representativeness that lies within
each subset 𝐷′ ∈ P(𝐷), and a budget 𝐵 ∈ N, they seek a subset
𝐷∗ ⊆ 𝐷 with at most 𝐵 elements reaching maximal utility. That is,

𝐷∗ = argmax
𝐷 ′⊆𝐷, |𝐷 ′ | ≤𝐵

𝑓 (𝐷′).

This optimization exercise is intractable for arbitrary functions.
However, set functions that capture desirable features in a sum-
mary such as overall diversity and coverage over 𝐷 like the facility
location mapping [22] are generally non-negative, monotone, and
submodular [24, 34, 35]. Under said properties, the GREEDY algo-
rithm [29] or its popular accelerated versions LAZY-GREEDY [26] and
1https://vldb.org/2019/?program-schedule-keynote-speakers
2https://dolapworkshop.github.io
3https://www.dasfaa2024.org/keynotes/
4https://europe.acm.org/seasonal-schools/data-science/2025

STOCHASTIC-GREEDY [27], yield a solution with (1 − 1/𝑒) approxi-
mation guarantee to the optimal one in polynomial time. Despite
producing good approximate solutions, the GREEDY algorithm and
its accelerated variants lack scalability. That is, their execution
often becomes infeasible when running in data intensive environ-
ments. The impracticability of polynomial time algorithms in large
scale data settings has motivated the scientific community to ex-
plore alternatives like the distributed (GREEDI [3, 28]) and streaming
paradigms (SIEVESTREAMING [2]).

Apart from statistical and submodular approaches, summariza-
tion techniques originating from computational geometry have also
received attention lately. Among geometric summaries, coresets and
sketches stand out. A coreset [13, 31] is a small representation of
a dataset used to perform fast approximate inference with strong
theoretical guarantees. Coresets are designed so that the result
produced when running mining algorithms on such summaries
closely resembles the outcome obtained when ran on the complete
dataset. Further, sketching allows summarization of streaming data
on the fly. A sketch [5, 6] is an easily updatable data structure that
gets modified as new instances are received. Notable sketching
techniques include: Bloom filters, Count-Min, and HyperLogLog
sketching.

2.2 Data Forgetting
Despite their different nature, all summarization techniques share
a similar philosophy when addressing data reduction: every data
point in the input dataset 𝐷 is assumed to convey a certain degree
of valuable information. Since the ultimate goal of summarization
is to construct a synopsis that is as representative as possible of the
complete dataset, every record in 𝐷 is presumed to be relevant.

Data rotting [18, 19] was first to challenge this premise by propos-
ing that data, like everything else in nature, “rots away” losing its
value over time. Data forgetting, a concept that we introduce, algo-
rithmically formalizes data reduction under the rotting assumption.
The inspiration behind our choice of the name “data forgetting”
stems from the original vision paper [20]. Kersten and Sidirour-
gos [20] propose that data management systems should not store
records indefinitely but rather have the capability to selectively
“forget” entries that have become valueless. The forgetting frame-
work acknowledges that, at any point in time, value is not equally
distributed among all regions of a given dataset. That is, upon fixing
a notion of data value / data importance orthogonal to representa-
tiveness, there are some portions in 𝐷 that contain higher value
than others. Data forgetting routines aim to identify the valuable
regions within a dataset and “forget” (i.e., delete) everything that
lies outside of them. To date, only two existing techniques fall under
this paradigm: amnesia algorithms and submodular-based routines.

Amnesia algorithms created a paradigm shift in the conception of
the role of databases [20]. Amnesia algorithms are online probabilis-
tic rules that provide databases the power to controllably delete data
entries over time. Hence, unlike traditional ones, amnesia-scheme
equipped databases are not conceived as static objects whose sole
purpose is storing data indefinitely, but as dynamic entities able
to dispose of data points that will not be useful in the future. The
amnesia model is very simple: Data arrives at successive time steps
in form of equally-sized batches, and only 𝐵 data points are held
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inside the database at any point in time. That is, at each time step
𝑡 ,𝑚 new records arrive and𝑚 existing entries in the database are
forgotten to meet the storage budget 𝐵. The way such removal is
executed depends on the specific amnesia strategy. In general, the
𝑚 least useful data points are deleted at each step 𝑡 . Nonetheless,
usefulness is an extremely domain-dependent concept. Depending
on the type of data and case application, it can vary unimaginably.
Three notions of data usefulness are proposed in [20], each resulting
in a different amnesia scheme: temporal, spatial, and query based.
Nevertheless, a significant limitation of these routines lies in the
absence of theoretical guarantees

A deterministic alternative to probability-reliant amnesia algo-
rithms are submodular-based routines. Submodular-based routines
exploit modifications of vanilla submodular algorithms like GREEDY
(preference cover problem [14]) or its popular accelerated version
LAZY GREEDY (photo archival problem [7, 8]) to sieve subsets that
maximize topology-aware versions of query satisfiability like adap-
tations of the facility location function. In particular, [7] proposes
an effective pre-processing step to speed objective evaluation dur-
ing the execution of LAZY GREEDY. Nevertheless, a noteworthy
limitation of such methods resides in the necessity for objective
evaluation. Submodular methods become unfeasible when objective
evaluation is very expensive. This is certainly the case when maxi-
mizing the expected query fulfillment under the facility location
mapping.

3 STRUCTURE AND OUTLINE
The tutorial is structured in six main parts. The first introduces
gradually the challenges posed by the ever-growing digital universe
within a world of limited storage, motivating the need for data
reduction. It motivates the audience by starting from a well-known
clip from Martin Kersten [15], where he sets out why we should
rethink our approach to data retention, and suggests that users
should be more concerned about the duration of data retention or
consider distilling it into summarized information.

The second part provides a very brief overview on reducing data
through redundancy removal. It shows how data cleaning [33] and
data de-duplication [12][10] at the instance and the schema level
can be used to improve data quality, increasing in this way the data
reliability [9] with less space.

The third part discusses the state-of-the-art on data summariza-
tion but under the prism of data reduction. It provides an overview
of summarization objectives [24, 34, 35] alongside an introduction
to submodular set functions [22]. It presents the most relevant data
summarization techniques [1, 4–6, 13, 31, 36], with a particular em-
phasis on the submodular class [2, 3, 26, 28, 29], and discusses their
ability and effectiveness in reducing datasets. It continues with
the limitations of the data summarization paradigm and justify the
need for transitioning to the novel data reduction paradigm: data
forgetting.

The fourth part focuses on the latest developments in data re-
duction. First, it introduces the concept of data rotting [18, 19]. Fol-
lowing that, it explores a series of techniques that we have grouped
together and refer to as data forgetting routines. It will highlight
and provide in-depth explanations of the main differences between

(1) Introduction and Motivation
(a) The need for Data Reduction
(b) Data Forgetting: the new Data Reduction paradigm
(c) Application of Data Forgetting

(2) Redundancy Removal
(a) Data Deduplication [12][10]
(b) Data Cleaning [33]
(c) Reliability [9]

(3) Data Summarization
(a) Statistical Summarization

(i) Aggregation [36]
(ii) Histogramming [1]
(iii) Sampling [4]

(b) Geometric Summarization
(i) Coresets [13, 31]
(ii) Sketches [5, 6]

(c) Submodular Summarization
(i) Set functions and Submodularity [22]
(ii) Summarization objectives [24, 34, 35]

(4) Data Forgetting
(a) Data Rotting [18, 19]
(b) Amnesia algorithms [20]

(5) Submodular Data Forgetting
(a) Forgetting Objectives [7, 8, 14]
(b) The GREEDY algorithm [29]
(c) Accelerated versions of GREEDY

(i) The LAZY-GREEDY [26]
(ii) The STOCHASTIC-GREEDY [27]

(d) Scaled up versions of GREEDY
(i) The GREEDI [3, 28]
(ii) The SIEVESTREAMING [2]

(6) Challenges and Remarks

Figure 1: Data Reduction Tutorial Outline

these techniques and traditional summarization methods, explain-
ing why they are better suited to address the needs of modern
dataset reduction. It will start with the amnesia algorithms [20].

The fifth part will dive deeper into a special case of data for-
getting techniques, the submodular-based [7, 8, 14]. In contrast to
amnesia-based routines, submodular-based data forgetting routines
enable the forgetting of datasets with strong theoretical guarantees.
Nonetheless, a noteworthy limitation of these routines resides in
the necessity for extensive function evaluation, which means that
in data intensive settings where function evaluation is costly, these
algorithms become infeasible.

The last part is dedicated to challenges and open research di-
rections. It discusses questions for further research, like: Can we
rapidly forget massive data without compromising solution qual-
ity? Can we forget massive data on the fly with a reasonably good
approximation ratio? Can we forget datasets where points have
different storage costs? Can machine learning help in finding out
the best subset of data/metadata to store? Can we easily integrate
these techniques into existing data management systems?
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4 TARGET AUDIENCE
The tutorial is intended for researchers and practitioners interested
in topics of big data management, data storage, data reduction, data
curation, data cleaning, and data quality. No prior knowledge is
required to follow the tutorial, but some familiarity with fundamen-
tal database and basic data mining concepts facilitates it. It aims at
fostering collaborations between disciplines like data management,
data mining, and knowledge discovery. Researchers and students
will find interesting ideas and challenges to start research in data
reduction, particularly in data forgetting methods. Moreover, they
will get an overview of the existing state of the art approaches. Prac-
titioners, on the other hand, will find the tutorial appealing since it
will present a new generation data reduction techniques, which can
be easily applied on a variety of existing data management systems
of structured and non-structured data.

5 PRESENTERS

Ramon Rico is a PhD candidate of Computer Science, a member of
the Data Intensive Systems group and of the AI Lab for Sustainable
Finance at Utrecht University. He is also an external AI researcher
at the ING group in Amsterdam. He has received his BSc Hons.
degree in Mathematics from the Autonomous University of Madrid,
and his MSc in Computer Science from Utrecht University. He
conducted his master thesis on the forefront of data reduction
methods, advancing the current state of the art in data forgetting
methods. His scientific interests include submodular optimization
methods for big data reduction and self-explainable graph neural
networks for financial applications.

Arno Siebes is a professor of Computer Science at Utrecht Univer-
sity, where he holds the chair of Algorithmic Data Analysis. He is
the head of the Algorithmic Data Analysis group. He has a PhD
degree in Computer Science from Twente University (1990). He
worked at the Dutch National Research Center for Mathematics
and Computer Science (CWI) from 1985 until 2000. He was one of
the co-founders of the data mining company “Data Distilleries”,
which by way of SPSS became part of IBM. In 1999 he became
a part time full professor at the Technical University Eindhoven,
since 2000 he is full time chair of Algorithmic Data Analysis and
full professor at the department of Information and Computing
Sciences of Utrecht University. Since 2017 he serves as the scientific
director of the national research school SIKS. His recent research is
on mining (sets) of patterns. Results of that line of research have
been published in top-tier conferences in the field such as ECML
PKDD, ICDM, KDD, and SDM, as well as in top journals such as
“Data Mining and Knowledge Discovery”. He also has served as a
Tutorials Chair for ICDM08 and co-organized a Dagstuhl Seminar
on "Detecting Local Patterns" in 2004.

Yannis Velegrakis is a professor of Computer Science at Utrecht
University, holding a chair on Very Large Data Management. He is
the head the Data Intensive Systems group and the leader of the
Master’s in Data Science. His area of expertise includes Big Data
Understanding, Knowledge Management, Highly Heterogeneous
Information Integration & Data Exchange, Data Curation, and Data

Quality. He holds a PhD degree in Computer Science from the Uni-
versity of Toronto. He has been a professor at the University of
Trento, a PI with the Archimedes Research Unit of the ATHENA Re-
search Center, a researcher at the AT&T Research Labs, and has also
spent time as a research visitor at IBM Almaden Research Center,
the Huawei European Research Center in Munich, the University
of California, Santa-Cruz, and the University of Paris-Saclay. He
has been the general chair for VLDB13 and ICDE24, and the PC
Chair for EDBT21. He is currently serving as president of the exec-
utive board of EDBT, and as a member of the VLDB Endowment
Executive Committee. He has served several times as Associate
Editor or Area Chair in SIGMOD, VLDB, EDBT, and ICDE, and has
given tutorials in ESCW20, SIGIR19, SIGMOD19, VLDB17, ICDE15,
ICDE12, ESWC12, and EDBT11.
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