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Entity Resolution (ER) is typically implemented as a batch task that processes all available data before

identifying duplicate records. However, applications with time or computational constraints, e.g., those running

in the cloud, require a progressive approach that produces results in a pay-as-you-go fashion. Numerous

algorithms have been proposed for Progressive ER in the literature. In this work, we propose a novel framework

for Progressive Entity Matching that organizes relevant techniques into four consecutive steps: (i) filtering,

which reduces the search space to the most likely candidate matches, (ii) weighting, which associates every

pair of candidate matches with a similarity score, (iii) scheduling, which prioritizes the execution of the

candidate matches so that the real duplicates precede the non-matching pairs, and (iv) matching, which applies

a complex, matching function to the pairs in the order defined by the previous step. We associate each step

with existing and novel techniques, illustrating that our framework overall generates a superset of the main

existing works in the field. We select the most representative combinations resulting from our framework

and fine-tune them over 10 established datasets for Record Linkage and 8 for Deduplication, with our results

indicating that our taxonomy yields a wide range of high performing progressive techniques both in terms of

effectiveness and time efficiency.
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1 Introduction
Entity Resolution (ER), often also referred to as Record Linkage (a.k.a. Clean-clean ER) or Dedupli-

cation (a.k.a. Dirty ER), is a fundamental task in data management [24]. It deals with the challenge

of identifying and linking data structures, typically referred to as entity profiles, that represent
the same real-world object [7] The linked structures are referred to as duplicates. Detecting the

duplicates is crucial for boosting the performance of a wide range of data management tasks, from

recommendation to question answering.

An ER application in order to be successful, needs to overcome a series of challenges [3, 7, 13].

The first is Volume. ER algorithms should scale to thousands or even millions of entity profiles.

This isn’t straightforward, due to the the inherently quadratic nature of ER, which is why it is
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id First name Last name City Zip Code

e1 John Doe London 123

e2 Peter Portman Dublin 567

e3 Donald Hirsh New Jersey 486

(a) Data source 𝐷1

(e1, e4), (e2, e7), (e2, e5), ..., (e3, e6)

(c) Ordered set of candidate pairs

e4

e5

e6

e7

John D.

Peterson Portman

Marie Pearson

Peter Portman

UK, 123

Athens, 789

Paris, 345

Ireland, 567

lives in:

lives in:

lives in:

lives in:

(b) Data source 𝐷2

Fig. 1. Two clean data sources and the candidate pairs generated by a Progressive Entity Matching approach.

addressed through filtering [32]. The second is Variety. ER should seamlessly apply to data sources

that vary in format, schema and structure. Yet, most ER approaches are crafted either for structured,

e.g., relational data or semi-structured, e.g., RDF [29]. The third is Velocity. Most ER solutions

operate in an offline mode, i.e., they produce results only after having processed all the input data.

Unfortunately, there are cases where there are restrictions and cost in computational or temporal

resources. An example is the cloud environment. In these cases, partial results are required within

a specific time frame [9–11, 45].

To address these challenges, we focus on Schema-agnostic Progressive Entity Matching. Velocity
is addressed by the progressive functionality, which yields results before processing all input

data through a pay-as-you-go functionality. Volume is addressed by Filtering, which restricts the

computational cost to the most similar entity profiles, disregarding those dissimilar. Variety is

addressed by the schema-agnostic functionality, which represents every entity profile through a

concatenation of all attribute values, regardless the respective attribute names.

Consider Figure 1 that illustrates a Record Linkage case, i.e., a case of two data sources 𝐷1 and 𝐷2,

each one being duplicate-free, meaning that it contains no matching entity profiles, but there are

duplicates across the sources. For instance, 𝑒1 matches to 𝑒4 and 𝑒2 to 𝑒7. The two sources need to be

merged, and to do so, the duplicates need to be detected. Furthermore, the two data sources exhibit

high variety, varying both in format (structured vs semi-structured) and in schema. Typically, an

ER process consists of three steps [3, 13]: Filtering, Entity Matching and Clustering. Yet, due to the

small size of this example, Filtering is omitted, while Clustering lies out of the scope of our work.

Therefore, we exclusively focus on Entity Matching, where a typical batch algorithm considers all

pairs of entities, returning 𝑒1 ≡ 𝑒4 and 𝑒2 ≡ 𝑒7 after processing the entire data sources, i.e., after

examining 12 pairs. In contrast, Progressive Entity Matching defines a processing order, as in Figure

1(c), so as to promote the most likely matches and detect most of them even if the processing is

terminated prematurely.

Most existing progressive methods are independent of matching decisions, defining a static
processing order [34, 45, 54]. Yet, they have some limitations: (i) They disregard recent advances

in Filtering: they exclusively consider (meta-)blocking as a pre-processing step for addressing

volume, but recent studies show that nearest neighbor search achieves a much higher performance

[25, 35, 50]. (ii) They disregard recent advances in natural language processing and the dominance

of the semantic entity representations that stem from pre-trained language models in both ER tasks,

i.e., blocking and matching. Instead, they exclusively rely on the syntactic representation of entity

profiles [25, 49, 50, 52, 56]. (iii) There is no generic framework that unifies the traditional, syntactic-

and blocking-based approaches with the latest, semantic-based ones that leverage nearest neighbor

search.

To address these shortcomings, we propose a novel framework for Progressive Entity Matching

that is generic enough to cover any type of entity representation and of Filtering methods. Our goal

is not to combine the outcome of different techniques (e.g., the syntactic- and the semantic-based),
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but to propose a set of generic, integrated steps that offer a series of options to researchers and

practitioners, facilitating the construction of progressive pipelines that leverage diverse methods in

a seamless way. To the best of our knowledge, no other framework offers this in a unifying way.

Our design space consists of four consecutive steps: (i) Filtering restricts the computational cost

to the most similar pairs of candidates. (ii) Weighting assigns a similar score to each candidate pair

that is proportional to the matching likelihood of the entity profiles comprising it. (iii) Scheduling

leverages the similarity scores in order to define the optimal processing order that gives precedence

to the duplicate pairs over the non-matching ones. (iv) Matching analytically examines each

candidate pair to decide whether its entity profiles are matching or not.

We explain how the filtering step of our framework incorporates all the existing state-of-the-art

approaches, from blocking- and sorting-based to those leveraging nearest neighbor search. For

each approach, we discuss the corresponding weighting functions for syntactic and semantic

representations. For scheduling, we propose four main algorithms based on the concept of the

similarity graph [29], which includes a node for each input entity with an edge connecting each

candidate pair. We stress that the existing Progressive Entity Matching approaches cover only

a small portion of those generated by our framework. We also stress that the matching process

lies outside the scope of this work, since it is an orthogonal issue [45, 54], with numerous recent

state-of-the-art solutions based on Deep Learning [8, 49].

To test the performance of our framework, we perform a grid search to fine-tune a wide range

of end-to-end pipelines over a set of 10 well-established real-world datasets for Record Linkage

and of 8 for Deduplication. The experimental results indicate the best combination of filtering

and scheduling algorithms in terms of effectiveness. We compare the best configuration of each

filtering approach with the state-of-the-art from the literature, i.e., DeepBlocker [50] and Sparkly

[35]. The former leverages semantic representations and the latter syntactic ones. This is the first

time the two algorithms are applied on Progressive Entity Matching. Our results indicate that

DeepBlocker consistently underperforms our semantic-based nearest-neighbor approach both with

respect to effectiveness and to time efficiency. Sparkly is much faster than our syntactic-based

nearest neighbor approach (due to its Spark-based parallelization), but at the same time, it is

significantly less accurate. We also consider an additional state-of-the-art technique as baseline

method: I-PES [11].

Overall, we make the following contributions:

(1) We introduce a generic framework for Progressive Entity Matching consisting of four steps,

that organize the existing approaches, and giving rise to some new. Among the latter are the

first progressive methods leveraging nearest-neighbor search.

(2) We analytically explain the configuration space of each progressive method generated by our

framework. Some of the new methods are the first to apply pre-trained language models to

Progressive Entity Matching.

(3) We perform an extensive experimental analysis of all Progressive Entity Matching approaches

and configurations (using grid search) over 18 well-established datasets. Our experiments give

valuable insights into the relative performance of the filtering and scheduling algorithms and

demonstrate the superiority of our approaches over the state-of-the-art in the literature.

The implementation of our approaches is available online at: https://github.com/JacobMaciejewski/

PER-Design-Space-Exploration.

2 Related Work
Progressive Entity Matching methods can be distinguished in two main categories, the static and the
dynamic [29]. The former generate a processing order that is independent of the matching decisions,
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while the latter update the processing order based on the latest matching decision(s). Our work

focuses on the former for three reasons. First, they offer a more realistic setting, where scheduling

is performed once, without the need of an oracle for the matching. The dynamic methods assume

an oracle with 100% matching accuracy in every turn. Second, the static methods are more efficient

than the dynamic, because the dynamic rearrange the candidate pairs after each matching decision.

This raises the computational cost significantly. Last, but not least, most existing Progressive Entity

Matching methods yield a static processing order [45, 54].

Our design space organizes the static methods proposed in [45, 54] into a unified framework that

facilitates their extension and comparison. It also integrates the latest works in blocking and nearest

neighbor search [28, 56], which correspond to the Filtering step and partially to the Weighting step

of our design space. State-of-the-art approaches like Sparkly [35] and DeepBlocker [50] can also be

integrated into our framework, however, they are used as baseline methods in our experimental

analysis.

Static approaches over dynamic data have recently been studied [11] by applying Progressive

Entity Matching to streaming data that is not available upfront, but arrives at varying rates. The

goal is to identify duplicates soon after their arrival, while scaling to large volumes. The specific

framework gives rise to three different schema-agnostic algorithms, of which the entity-centric

I-PES consistently exhibits the highest performance, and is, consequently, experimentally compared

to our approaches in Section 7.7.

Unlike the static progressive, the dynamic progressive rely on a perfect matching algorithm in

order to iteratively rearrange the processing order of the candidate pairs. The Dynamic Progressive

Sorted Neighborhood [34] organizes the sorted entities into a two-dimensional array such that

after detecting a match in 𝐴(𝑖, 𝑗), the processing moves on to check 𝐴(𝑖 + 1, 𝑗) / and 𝐴(𝑖, 𝑗 + 1).
This is a dynamic extension of our sorting-based workflows. The pBlocking [10] is another method

that initially generates a set of blocks, that is then iteratively refined through block cleaning based

on the ratio of duplicate and non-duplicate profiles as it is determined after a limited amount of

matching decisions in every round. Comparison cleaning based on meta-blocking is also applied.

This approach, which has been demonstrated in the BEER system [9], is a dynamic extension of the

blocking workflows of our design space.

Disk-based dynamic methods [48] have been used in cases of extremely large datasets that cannot

be entirely loaded into memory. They aim to avoid high I/O overhead by optimally scheduling

the transition of data between main memory and the hard disk, while searching for the most

promising pairs and defining their processing order. They leverages a cost benefit analysis to split

data into partitions that are iteratively scheduled for processing. In Query-driven ER [46], the ER is

performed on query results rather than entire datasets. A data lake is queried and the produced

results are progressively returned after deduplication. This idea has been implemented in the

BrewER system [57].

It should be stressed that the blocking workflows of our design space are based on the pipeline

presented elsewhere [33], but go beyond it by including Block Filtering [25] and many more

weighting schemes (ref. to W1-W14 in Section 5.3). Furthermore, the specific work [33] focuses

exclusively on batch ER, missing the Scheduling phase which renders a blocking workflow suitable

for Progressive Entity Matching. To the best of our knowledge, no prior work examines the

performance of progressive workflows that combine a diverse set of blocking and weighting

techniques with novel scheduling algorithms through a thorough experimental analysis.

Due to the Scheduling, Active Learning based ER [12, 15, 43], AL-based for short, is similar to

Progressive Entity Matching because it also assigns scores to the candidate pairs generated by

Filtering. However, instead of trying to place the matching pairs before the non-matching, AL-based

ER aims to minimize the number of labeled pairs that are required for training a supervised classifier
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Fig. 2. Batch vs Progressive Entity Matching.

for Entity Matching. To this end, it operates iteratively, selecting in each iteration the most critical

unlabeled pairs, whose labeling will reinforce the distinction between the positive and the negative

classes (e.g., the most uncertain pairs as determined through a committee of classifiers) [21, 29]. In

other words, AL-based ER promotes pairs with a matching likelihood close to 0.5, unlike Progressive

Entity Matching, which promotes pairs with a matching likelihood close to 1.0. Using the former in

the place of the latter (or vice versa) would result in poor performance. In the future, it is worth

exploring more elaborate techniques for combining AL-based ER with Progressive Entity Matching.

3 Problem Statement
Entity Resolution comes in different forms depending on the number of input data sources [3, 5, 7,

13, 41]. The main are:

• Deduplication, often referred to as Dirty ER, receives as input a single data source 𝐷 that

contains duplicates. The goal is to partition 𝐷 into sets of duplicate entity profiles such that every

set corresponds to a different real-world object.

• Record Linkage, often referred to as Clean-Clean ER, receives as input two data sources 𝐷1 and

𝐷2, with each one containing no dublicates in itself. Its goal is to identify the duplicate profiles

across the two sources.

• Multi-source ER generalizes Record Linkage to more than two duplicate-free, but overlapping

data sources. The goal is to cluster together the duplicate profiles from the different sources. This

task can also be treated as a series of Record Linkage tasks or as a single Deduplication task, where

the profiles of the identified linkages are merged into one after each step.

In all cases, the solution to ER typically consists of the two consecutive steps forming the

Filtering-Verification framework [24, 32, 50]. First, Filtering reduces the search space to the most

similar entity profiles, thus excluding the obvious non-matches. This is an approximate process

that curtails the originally quadratic time complexity at the cost of missing a limited portion of

the duplicate profiles. Its outcome comprises a set of candidate pairs, which is then processed

by Verification: typically, a complex, time-consuming function is applied to each pair < 𝑒𝑖 , 𝑒 𝑗 >,

yielding either a binary decision (“match” or “non-match”) or a numeric score proportional to the

matching likelihood of 𝑒𝑖 and 𝑒 𝑗 .

A major drawback of the Filtering-Verification framework is its batch functionality, which yields

results only after processing the entire input [29]. This is not compatible with ER applications having

strict performance requirements with respect to run-time and/or computational costs [25, 35, 50].

For example, consider applying ER to large corporate data lakes that run on third-party cloud

infrastructures, which charge according to the computational resources that are consumed (e.g.,
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Filtering Weighting Scheduling Matching
D1

D2

MC Cw Cs

BU

Fig. 3. The Progressive Entity Matching workflow.

the AWS Lambda functions). In these settings, the preferred solution is a progressive functionality
that produces results in a pay-as-you-go manner [29]. This requires that the matching pairs take

precedence over the non-matching such that the more processing time is available or the more

verifications are performed, the more duplicates are detected.

More formally, assuming that batch Entity Matching needs to verify 𝑁 candidate pairs in order

to process a data source 𝐷 , a progressive approach should satisfy the following requirements

[34, 45, 54]: (i) Higher early effectiveness. If a batch and a Progressive Entity Matching approach

verify 𝑁 ′ candidate pairs such that 𝑁 ′ ≪ 𝑁 , the latter detects many more matching pairs than the

former. (ii) Same eventual effectiveness. Upon verifying 𝑁 pairs, the Progressive Entity Matching

approach yields the same duplicates as the batch one. The two requirements are highlighted in

Figure 2. The horizontal axis corresponds to the verified pairs, while the vertical one corresponds to

recall. We define the area under the curve as progressive recall@N, where 𝑁 is the budget of the

maximum verified pairs. It takes values in [0, 1], with higher values indicating higher effectiveness.

In other words, the higher the progressive recall is, the more and earlier are the existing duplicates

detected.

In this context, our goal can be formally described as follows:

Problem 1. Given two data sources, 𝐷1 and 𝐷2, along with a budget of 𝑁 verifications, Progres-
sive Entity Matching produces a set of candidate pairs ordered such that progressive recall@𝑁 is
maximized, while the run-time is minimized.

Note that the above definition can be easily adapted to Deduplication and Multi-source ER as

well as to a budget defined in terms of maximum run-time. Note also that the run-time excludes

the Verification time [45, 54] – it only considers the time that intervenes between receiving the

input data sources and returning the ordered set of candidate pairs. A similar assumption holds

for progressive recall [45, 54]: it is independent of Verification performance, assuming an oracle

function that always decides with 100% accuracy whether two entity profiles are matching or not.

4 Design Space of Progressive Entity Matching
We now propose an architecture template for Progressive Entity Matching solution consisting of

four modules applied in the following order, also illustrated in Figure 3:

(1) Filtering receives as input two clean data sources, 𝐷1 and 𝐷2, (or a single dirty one) and returns

as output the set of candidate pairs 𝐶 , which includes the most likely matches.

(2) Weighting receives as input the set of candidates pairs𝐶 defined by filtering. Its output comprises

a set𝐶𝑤 with the same pairs, where each one is assigned to a positive weight that is proportional

to the matching likelihood of its entities.

(3) Scheduling receives as input the user-defined budget of 𝐵𝑈 verifications along with the weighted

candidate pairs𝐶𝑤 and defines their processing order in such a way that the most likely matches

are examined first. Therefore, its output comprises 𝐶𝑠 , which is a permutation of the given set

𝐶𝑤 .
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(4) Matching receives𝐶𝑠 as input and iteratively outputs to the next candidate pair to be verified. In

other words, it simply applies a matching function to the pairs in𝐶𝑠 according to the processing

order defined by Scheduling. The set of verified pairs is denoted by𝑀 .

For each module, we discuss a diverse approaches. First for Filtering and Weighting (Section

5), and then for Scheduling (Section 6). An exception is the Matching step, which is common to

both batch and progressive solutions, with a bulk of recent works combining language models

with deep learning to achieve high accuracy [8, 30, 50]. This is why Matching is out of the scope

of this work. The same applies to the clustering step, which is necessary for an end-to-end ER

pipeline. The integration of the state-of-the-art clustering techniques for Record Linkage [27] and

Deduplication [14, 51] in our framework is left for future work.

5 Filtering &Weighting
Due to the quadratic time complexity of ER, Filtering is necessary for curtailing the search space

by discarding the apparent non-matches [3, 35, 50]. In other words, Filtering retains only the most

likely matches, as determined by their high similarity, through a quick and approximate process of

low time complexity, which can be accomplished in one of the following ways:

(1) NN workflows. The input entity profiles are embedded into dense, high-dimensional vectors

through pre-trained language models. In Record Linkage, one of the two data sources is indexed,

while the vectorized profiles of the other query the index to retrieve their semantically 𝑘 nearest

neighbors.

(2) Join workflows. Unlike the semantic focus of NN workflows, the join workflows leverage

syntactic similarities: they follow the same approach of indexing and querying, but convert the

input entity profiles into sparse, multi-dimensional numeric vectors. Every dimension in these

vectors corresponds to a different character or token 𝑛-gram, with a weight proportional to its

frequency in the values of the respective profile.

(3) Blocking workflows. Signatures, called blocking keys, are extracted from the attribute values

of each profile. Each signature 𝑠 creates a separate block 𝑏𝑠 containing all entities associated

with 𝑠 . The resulting blocks are refined based on the assumption that the larger a block is, the

less likely it is to contain distinctive information. The refined blocks are then converted into

a graph, where block sharing is translated into node adjacency. The edges are weighted by

metrics quantifying the block co-occurrence of the corresponding entity profiles.

(4) Sorting-based Workflows. They rely on the same signatures as blocking workflows, but

define as candidates the pairs with similar (not identical) blocking keys. The entity profiles

are alphabetically ordered, according to the signatures extracted from their attribute values.

This results in a sorted list of entities, which is iteratively processed using sliding windows of

increasing size. The matching likelihood of two profiles is proportional to their co-occurrence

frequency in these windows.

Following [45], all approaches operate in a schema-agnostic manner that disregards all attribute

names, but considers all attribute values. None of them involves a learning-based functionality that

requires a labelled dataset. Instead, they all rely on heuristics, trading high time efficiency at the

cost of lower effectiveness. Below, we elaborate on their functionality along with the corresponding

weighting functions and the configuration parameters.

5.1 NNWorkflows
The functionality of NN workflows is outlined in Algorithm 1. The input comprises the two

data sources to be matched along with the maximum number of candidates per query entity,

corresponding to its most probable matches. For 𝑘 , we consider three representative values (i.e.,

Proc. ACM Manag. Data, Vol. 3, No. 1 (SIGMOD), Article 65. Publication date: February 2025.



65:8 Jakub Maciejewski, Konstantinos Nikoletos, George Papadakis, and Yannis Velegrakis

Input: D1, D2:The data sources to be matched, 𝑘 : the maximum number of candidates per query

entity, 𝐿𝑀 : the Language Model that vectorizes each entity, 𝑆𝑖𝑚: the similarity function

between two embedding vectors. 𝐼𝑆 : the indexing scheme.

Output: C: the resulting set of candidate pairs

1 foreach entity 𝑒𝑖 ∈ D1 do
2 E(𝑒𝑖 ) ← LM.Embed(𝑒𝑖 );
3 𝐼 .index(E(𝑒𝑖 ));
4 end
5 𝐶 ← {} ; // Set of candidate pairs

6 foreach entity 𝑒 𝑗 ∈ D2 do
7 E(𝑒 𝑗 ) ← LM.Embed(𝑒 𝑗 );
8 C𝑗 ← 𝐼 .getNN(Sim, E(𝑒 𝑗 ), 𝑘);
9 C ← C ∪ C𝑖 ;

10 end
11 return C;

Algorithm 1: Outline of the NN and Join workflows.

𝑘 ∈ {1, 5, 10}). The input should also specify the pre-trained language model 𝐿𝑀 that converts the

given entities into embedding vectors. Following [56], we consider 10 established LMs, disregarding

AlBERT [18] and XLNet [55], due to their consistently high run-time and low effectiveness:

• the main static ones, which always associate every token or character n-gram with the same

precalculated embedding vector: Word2Vec [22, 23], FastText [2] and Glove [36].

• themain BERT-based ones, which offer a per-token contextual vectorization: BERT [6], DistilBERT

[42], and RoBERTa [19].

• the main SentenceBERT-based ones, which associate the entire schema-agnostic representation

of every entity with a single context-aware embedding vector: S-MiniLM [53], S-MPNet [47],

S-GTR-T5 [37] and S-DistilRoBERTa [19].

Another configuration parameter is the similarity function 𝑆𝑖𝑚 : R → [0, 1] between two

multidimensional embedding vectors 𝑣,𝑤 ∈ R𝑛
. We consider two established options:

(1) The Euclidean one, which considers the magnitude and direction of the two vectors, but is

sensitive to their dimensionality [56]:

𝑠euclidean (v,w) =
1.0

1.0 + 𝑑euclidean (v,w)
=

1.0

1.0 +
√︁∑𝑛

𝑖=1
(𝑣𝑖 −𝑤𝑖 )2

(2) The cosine similarity, which exclusively considers the angle between the two input vectors:

𝑠cosine (v,w) = 1.0 − 𝑑cosine (v,w) =
∑𝑛

𝑖=1
𝑣𝑖 ·𝑤𝑖√︃∑𝑛

𝑖=1
𝑣2

𝑖
·
√︃∑𝑛

𝑖=1
𝑤2

𝑖

The final configuration parameter is the indexing scheme, which exclusively applies to Record

Linkage, designating which of the input data sources will be indexed – leaving the other one as the

query set. Three are the possible options: (1) indexing the smallest source, (2) indexing the largest

one, or (3) both.

In Algorithm 1, we index the first data source 𝐷1 and query with the second one, 𝐷2. More specif-

ically, every entity in 𝐷1 is converted to the embedding vector of the given 𝐿𝑀 , after concatenating

all its attribute values in a sentence without any special tokens [56] (Line 2). The resulting vector is

indexed by a state-of-the-art tool for nearest neighbor search (Line 3). Based on [1], we use FAISS
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[16] for this purpose, as it constitutes one of the fastest and most effective libraries for indexing

high dimensional embedding vectors and retrieving the nearest neighbors per query.

Next, all entity profiles in 𝐷2 are vectorized one by one, using the same LM (Lines 6-7). Every

embedding vector is posed as a query to the index 𝐼 , returning the 𝑘 most similar entities from 𝐷1

(Line 8). These candidates are added to the set of candidate pairs 𝐶 , which is returned as output

(Lines 9-11). Note that internally, C associates every candidate pair with its similarity score as

determined by the given similarity function, 𝑆𝑖𝑚.

The time complexity of Algorithm 1 depends on the time complexity of each query to the index

𝐼 , i.e., 𝑂 ( |𝐷2 | · |𝑞𝐼 (𝐷1) |), where |𝑞𝐼 (𝐷1) | is the time complexity of a single entity on 𝐼 , after having

indexed 𝐷1 entities. Note that |𝑞𝐼 (𝐷1) | is constant and |𝑞𝐼 (𝐷1) | ≪ |𝐷1 |, due to FAISS’ internal

functionality, which partitions the indexed vectors in such a way that every query is restricted to a

few partitions (rather than the entire indexed data source). Theoretically, the time complexity of

vectorizing all input entity profiles is linear and, thus, lower than the cost of querying. Similarly,

the space complexity of Algorithm 1 is determined by the the cost of storing the vectors of 𝐷1

entities in memory, i.e., 𝑂 ( |𝐷1 |).
NN workflows have not been applied to Progressive Entity Matching before.

5.2 Join Workflows
Approaches of this type follow Algorithm 1, involving two phases:

(1) the Indexing phase in Lines 1-4, where one of the input datasets is transformed to a structure

suitable for the fast detection of nearest neighbors, and

(2) the Querying phase in Lines 5-10, where entities from the other input dataset query the indexing

structure to detect their nearest neighbors.

The only difference between Join and NN workflows lies in the vectorization approach: unlike

the dense embedding vectors of the latter, which map entities to the semantic space of language

models, the Join workflows leverage sparse multi-dimensional vectors directly extracted from the

attribute values of the input entities. More specifically, two functions are combined to this end:

(1) The tokenization function converts the concatenated attribute values of each entity into a set of

character or token n-grams: 𝑛 ∈ {3, 4, 5} in the former case and 𝑛 ∈ {1, 2} in the latter one.

(2) The feature scoring function associates every dimension in the sparse vector with a numerical

score. We consider 3 options:

(a) Boolean scores (BS) indicate the presence or absence of an n-gram in the attribute values

of the given entity.

(b) Term-frequency scores (TF) indicate how many times each n-gram appears in the attribute

values of the given entity. Note that the frequency of each n-gram is normalized by the

highest frequency within the given entity.

(c) TF-IDF scores (TF-IDF) extends TF to encompass the n-gram’s importance across the entire

input dataset through the logarithmically scaled inverse fraction of the number of profiles

that contain the n-gram.

In the following, we consider all combinations of tokenization and feature scoring functions. Note

that instead of FAISS, we use a standard inverted index for quickly retrieving the candidates per

query entity, due to the sparse vectors used by Join workflows. Note that Join workflows have not

been applied to Progressive Entity Matching before.

5.3 Blocking Workflows
The functionality of these solutions is outlined in Algorithm 2.
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Input: D1, D2:The data sources to be matched,𝑊𝑆 : the weighting scheme

Output: G = V × E: the similarity graph

1 B ← 𝑡𝑜𝑘𝑒𝑛𝐵𝑙𝑜𝑐𝑘𝑖𝑛𝑔(D1,D2);
2 B′ ← 𝑏𝑙𝑜𝑐𝑘𝑃𝑢𝑟𝑔𝑖𝑛𝑔(B);
3 B′′ ← 𝑏𝑙𝑜𝑐𝑘𝐹𝑖𝑙𝑡𝑒𝑟𝑖𝑛𝑔(B′);
4 G ← {};
5 foreach entity 𝑒𝑖 ∈ 𝐷 do
6 𝐵𝑒𝑖 ←

⋃
𝑏∈B′′

𝑏 | 𝑒𝑖 ∈ 𝑏;

7 foreach block 𝑏 ∈ 𝐵𝑒𝑖 , 𝑒𝑖 ∈ D1 do
8 foreach 𝑒 𝑗 ∈ 𝑏 : 𝑒 𝑗 ∈ D2 do
9 V ← V ∪ {𝑛 𝑗 };

10 E ← E ∪ {(𝑛𝑖 , 𝑛 𝑗 )};
11 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑛𝑖 , 𝑛 𝑗 ) =𝑊𝑆 (𝑛𝑖 , 𝑛 𝑗 ,B′′)
12 end
13 end
14 end
15 return G;

Algorithm 2: Outline of the blocking workflows.

Token Blocking [25, 33] is first applied (Line 1), generating a separate block for each token in

the attribute values of the given entity profiles. Any other blocking method can be used, too, but

Token Blocking is the only parameter-free one.

Next, Block Purging [25, 25] is applied (Line 2) to remove oversized blocks, which comprise a

large number of pairs, but very few (if any) are matching and have no other block in common.

Similar to Token Blocking, this is a parameter-free approach. The core assumption is that the larger
a block is, the more likely it is to contain repeated pairs that are not duplicates.
The same assumption lies at the core of the subsequent step (Line 3), Block Filtering [25]: it

removes every entity from a specific portion of its largest blocks, thus reducing the unnecessary

pairs that involve non-matching entities at a small cost in recall. Following [31], this ratio is 80%.

Based on the blocks resulting from the initial steps, a similarity graph G is created (Lines 4-14).

This is an undirected graph, whose nodes correspond to entities and its edges connect the candidate

pairs (Lines 9-10). Every edge is weighted according to the characteristics of blocks containing

every one of the adjacent entities as well as the characteristics of common blocks (Line 11). These

characteristics include the number of blocks, their size, i.e., their total number of entities, and their

cardinality, i.e., their candidate pairs.
More specifically, the weighting scheme is the sole configuration parameter of the blocking

workflows. Its rationale is similar to that of Block Purging and Block Filtering: the more and smaller

blocks two entities share (i.e., the more and less frequent their common signatures are), the more

likely they are to be matching. In this context, the possible weighting schemes for two entities, 𝑒𝑖
and 𝑒 𝑗 , are the following [25, 33]:

W1) Common Blocks: CB = |𝐵𝑖 ∩ 𝐵 𝑗 |, where 𝐵𝑥 stands for the set of blocks containing entity 𝑒𝑥
and |𝐵𝑥 | for its size.

W2) Cosine=|𝐵𝑖 ∩ 𝐵 𝑗 |/
√︁
|𝐵𝑖 | · |𝐵 𝑗 |=𝐶𝐵/

√︁
|𝐵𝑖 | · |𝐵 𝑗 |.

W3) Dice=2 · |𝐵𝑖 ∩ 𝐵 𝑗 |/( |𝐵𝑖 | + |𝐵 𝑗 |)=2 ·𝐶𝐵/(|𝐵𝑖 | + |𝐵 𝑗 |).
W4) Jaccard=|𝐵𝑖 ∩ 𝐵 𝑗 |/|𝐵𝑖 ∪ 𝐵 𝑗 |=𝐶𝐵/(|𝐵𝑖 | + |𝐵 𝑗 | −𝐶𝐵).
W5) Size Normalized Common Blocks:SN-CB=

∑
𝑏∈𝐵𝑖∩𝐵 𝑗

1/|𝑏 |.
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Input: D1, D2:The data sources to be matched,𝑤 : the window size,𝑊𝑆 : the weighting scheme

Output: C: the resulting set of candidate pairs
1 P ← SortedNeighborhood(D1,D2);
2 𝐶 ← {} ; // Set of candidate pairs

3 foreach entity 𝑒𝑖 ∈ D1 do
4 𝑁𝑖 ← {} ; // Set of neighbors

5 positions𝑖 ← P.getPositions(𝑒𝑖 );
6 foreach position 𝑝𝑠 ∈ positions𝑖 do
7 𝑁𝑖 ← 𝑁𝑖 ∪ (P.getNeighbors(𝑝𝑠,𝑤) ∩ D2);
8 end
9 foreach entity 𝑒 𝑗 ∈ 𝑁𝑖 do
10 𝑠𝑖𝑚𝑖, 𝑗 = P.getSimilarity(𝑒𝑖 , 𝑒 𝑗 ,𝑊 𝑆);
11 C ← C ∪ (𝑒𝑖 , 𝑒 𝑗 , 𝑠𝑖𝑚𝑖, 𝑗 );
12 end
13 end
14 return C;

Algorithm 3: Outline of the sorting-based workflows.

W6) Size Normalized Cosine: 𝑆𝑁 -𝐶𝐵/
√︁
𝑆𝑁 -𝐵𝑖 · 𝑆𝑁 -𝐵 𝑗 , where 𝑆𝑁 -𝐵𝑖 =

∑
𝑏∈𝐵 1/|𝑏 |, with SN denot-

ing size normalization and |𝑏 | symbolizing the number of entities in block 𝑏.

W7) Size Normalized Dice: 2 · 𝑆𝑁 -𝐶𝐵/(𝑆𝑁 -𝐵𝑖 + 𝑆𝑁 -𝐵 𝑗 ).
W8) Size Normalized Jaccard: 𝑆𝑁 -𝐶𝐵/(𝑆𝑁 -𝐵𝑖 + 𝑆𝑁 -𝐵 𝑗 − 𝑆𝑁 -𝐶𝐵).
W9) Cardinality Normalized Common Blocks: CN-CB=

∑
𝑏∈𝐵𝑖∩𝐵 𝑗

1/| |𝑏 | |.
W10) Cardinality Normalized Cosine: CN-Cosine= 𝐶𝑁 -𝐶𝐵/

√︁
𝐶𝑁 -𝐵𝑖 ·𝐶𝑁 -𝐵 𝑗 , where 𝐶𝑁 -𝐵𝑖

=
∑

𝑏∈𝐵 1/| |𝑏 | |, with CN denoting cardinality normalization and | |𝑏 | | symbolizing the number

of pairs in block 𝑏.

W11) Cardinality Normalized Dice: CN-Dice=2 ·𝐶𝑁 -𝐶𝐵/(𝐶𝑁 -𝐵𝑖 +𝐶𝑁 -𝐵 𝑗 ).
W12) Cardinality Normalized Jaccard: CN-Jaccard=𝐶𝑁 -𝐶𝐵/(𝐶𝑁 -𝐵𝑖 +𝐶𝑁 -𝐵 𝑗 −𝐶𝑁 -𝐶𝐵).
W13) Enhanced Common Blocks: ECB=𝐶𝐵 · log

|𝐵 |
|𝐵 𝑗 | · log

|𝐵 |
|𝐵 𝑗 | .

W14) Enahnced Jaccard: EJS=Jaccard · log
|𝑉 |
|𝑣𝑗 | · log

|𝑉 |
|𝑣𝑖 | .

Note that the time and space complexity of Algorithm 2 is determined by the number of pairs in

the final set of blocks B′′, i.e.,𝑂 ( | |B′′ | |). Note also that only CN-CB has been applied to Progressive

Entity Matching before (it is called ARCS in [45]).

5.4 Sorting-based Workflows
The functionality of these solutions is outlined in Algorithm 3.

Initially, Sorted Neighborhood is applied (Line 1): first, it alphabetically sorts all tokens appearing

in the attribute values of all input entities and then, it sorts in random order the entities correspond-

ing to each token [45]. The resulting sorted list of entities is stored in an array 𝑃 . A window𝑤 slides

over this list to detect the candidate pairs. Its size𝑤 is fixed, given as a configuration parameter that

should be at least 2 so that at least two entities co-occur in each window. We consider all integers

in [2, 10].
Subsequently, for each input entity, we retrieve its positions in the array 𝑃 (Lines 3-5); each

position 𝑝𝑠 yields a neighborhood, which includes all other entities in positions 𝑃 [𝑝𝑠+1], 𝑃 [𝑝𝑠+2],...,
𝑃 [𝑝𝑠 +𝑤], where𝑤 is the current size of the window. These entities are the candidate pairs of the

current entity 𝑒𝑖 . They are all placed in a set 𝑁𝑖 comprising the neighbors of 𝑒𝑖 (Lines 6-8). Note that

the same entity might appear multiple times in the neighborhood of 𝑒𝑖 , due to different, contiguous
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tokens. Every neighboring entity 𝑒 𝑗 is then considered as a matching candidate of 𝑒𝑖 (Lines 9-12)

based on a similarity that stems from the closeness of their associated positions. The weighted

pairs are aggregated in the set of candidate pairs that is returned as output (Lines 11-14).

We consider the following options for the weighting scheme𝑊𝑆 that is given as configuration

parameter to compute the similarity between two candidate matches:

(1) Absolute Co-occurrence Frequency counts the number of positions that co-occur in the window

of size 𝑤 : ACF(𝑒𝑖 , 𝑒 𝑗 ,𝑤) = |{|𝑝𝑠𝑖 − 𝑝𝑠 𝑗 | < 𝑤 : 𝑝𝑠𝑖 ∈ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖 ∧ 𝑝𝑠 𝑗 ∈ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑗 }|, where
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑥 is the set of positions associated with entity 𝑒𝑥 .

(2) Normalized Co-occurrence Frequency, which is inspired from the Jaccard similarity:𝑁𝐶𝐹 (𝑒𝑖 , 𝑒 𝑗 ,𝑤) =
𝐴𝐶𝐹 (𝑒𝑖 ,𝑒 𝑗 ,𝑤 )

|𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖 |+|𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑗 |−𝐴𝐶𝐹 (𝑒𝑖 ,𝑒 𝑗 ,𝑤 ) .

(3) Dice Normalized Co-occurrence Frequency: 𝐷𝑁𝐶𝐹 (𝑒𝑖 , 𝑒 𝑗 ,𝑤) = 2 × 𝐴𝐶𝐹 (𝑒𝑖 ,𝑒 𝑗 ,𝑤 )
|𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖 |+|𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑗 | .

(4) Cosine Normalized Co-occurrence Frequency: 𝐶𝑁𝐶𝐹 (𝑒𝑖 , 𝑒 𝑗 ,𝑤) =
𝐴𝐶𝐹 (𝑒𝑖 ,𝑒 𝑗 ,𝑤 )√

|𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖 |× |𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑗 |
.

(5) Inverse Distance, which sums the inverse distances between two positions that are located

within the same window𝑤 : 𝐼𝐷 (𝑒𝑖 , 𝑒 𝑗 ,𝑤) =
∑

1

|𝑝𝑖−𝑝 𝑗 |∀𝑝𝑖∈𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠𝑖 , 𝑝 𝑗∈𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠 𝑗 , |𝑝𝑖 − 𝑝 𝑗 |<𝑤 .

Note that only NCF has already been applied to Progressive Entity Matching (it is called RCF in

[45]). Note also that Algorithm 3 entails another parameter, the functionality scope, which can be:

(1) Local Scope is the one presented in Algorithm 3, emitting all candidate pairs for a particular,

predetermined window size𝑤 .

(2) Global Scope repeats the processing in Lines 3-13 for a range of window sizes: from 2 to the

given size𝑤 , which in this case sets the maximum value. In each iteration, the similarity scores

of the candidate pairs identified in smaller windows are updated by adding the scores from the

current window.

The time complexity of Algorithm 3 is dominated by the computation of candidate pair weights

and the sorting of the tokens appearing in the attribute values of the input entities, i.e.,𝑂 ( |𝐶 | + |𝑇 | ·
log |𝑇 |), where |𝑇 | is the number of these tokens (we expect |𝐷1 | ≪ |𝑇 | and |𝐷2 | ≪ |𝑇 |, because
each entity contains multiple tokens in its attribute values). The space complexity is dominated by

the size of the array 𝑃 storing the sorted list of entities, 𝑂 ( |𝑃 |).

5.5 Application to Deduplication
The above are crafted for Record Linkage, where the input comprises of two datasets D1 and D2,

but can be easily adapted for the case of Deduplication, where the input is a single dataset D with

duplicates in itself. For that, some minor changes are required in Algorithm 1. Line 1 needs to index

D, Line 6 to use all entities in D as queries, and Line 9 to ensure that no duplicate pairs are added

in the output set C (i.e., that pair <𝑒𝑖 , 𝑒 𝑗>, 𝑖 ≠ 𝑗 , does not appear in the form <𝑒 𝑗 , 𝑒𝑖>). This can be

accomplished by predetermining the place of every entity in every new pair <𝑒𝑥 , 𝑒𝑦> added to C,
by requiring the entity with the lower id is placed on the left side of the pair. This unified form

allows for automatically discarding duplicate pairs, given that C is a set. Algorithm 2 also requires

minor changes to adapt to Deduplication. Line 1 provides as input to Token Blocking only the D,

while the entities 𝑒𝑖 in Line 7 and 𝑒 𝑗 in Line 8 should be different (i.e., 𝑖 ≠ 𝑗 ), as both belong to D.

Finallly, Algorithm 3 requires that in Line 1, the Sorted Neighborhood receives as input only D,

while Line 3 goes through all entities in D. In Line 7, instead of ensuring that every neighbor 𝑒 𝑗 is

from a different data source, we need to ensure that it is different from 𝑒𝑖 (i.e., 𝑗 ≠ 𝑖). Finally, every

pair <𝑒𝑖 , 𝑒 𝑗> added to the output set C in Line 11 should be ordered, similar to the Algorithm 1

adaptation, i.e., < 𝑒𝑥 , 𝑒𝑦 >⇒ 𝑥 < 𝑦.
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6 Scheduling
The goal of Scheduling is to define the optimal processing order of the weighted candidate pairs

produced by the two previous modules in Figure 3. Ideally, all matching pairs precede all non-

matching ones. To this end, Scheduling receives as input the budget 𝐵𝑈 specified by the user along

with the set of weighted candidate pairs 𝐶𝑤 from Algorithms 1 and 3 or the similarity graph from

Algorithm 2. The two forms of input are equivalent, and actually the former is transformed into

the latter by creating an undirected graph𝐺 = (𝑉 , 𝐸), where there is a separate node in𝑉 for every

input entities, while the edges in 𝐸 connect the candidate pairs and are weighted according to the

respective similarity score.

Based on the similarity graph, the scheduling algorithms are distinguished into those focusing

on edges or nodes. The former operate at a global level, considering all pairs, and the latter, at a

local one, operating at the level of neighborhoods (i.e., they define a separate processing order for

the candidates of each entity). More specifically, we introduce the following scheduling algorithms:

(1) Edge-centric Scheduling (EC). It defines a global processing order by sorting all pairs in

decreasing weight so as to retain the 𝐵𝑈 top ranked ones. Its time complexity is 𝑂 ( |𝐸 | log |𝐸 |),
but its space complexity is restricted to 𝑂 ( |𝑉 | + |𝐸 |), because it suffices to use a priority queue

that always contains the top-𝐵𝑈 weighted pairs (𝐵𝑈 ≪ |𝐸 |).
(2) Node-centric Scheduling. First, it assigns a score to each node, which is equal to the average

similarity in its neighborhood. Then, it sorts the nodes in decreasing score. Finally, it orders

the edges of each node neighborhood in decreasing weight. Its overall time complexity is

𝑂 ( |𝑉 | (log |𝑉 | + |𝑁 | log |𝑁 |)), where 𝑁 is the average size of a node neighborhood. Its space

complexity is𝑂 ( |𝑉 | + |𝐸 |). There are two variants for the processing order of the candidate pairs:
• Depth-First Search (DFS) starts with the top-weighted node, prioritizing all its edges in

decreasing weight, then does the same with the next weighted node and so on.

• Breadth-First Search (BFS) iteratively goes through the sorted list of nodes and in each

round, it prioritizes the next top-weighted edge of the current node, if any.

(3) Hybrid. It combines the operation of all the above algorithms. First, it computes the average

node neighborhood per entity. During this process, it keeps in memory the best edge/candidate

pair per neighborhood. These edges are globally sorted in decreasing weight. This is equivalent

to applying BFS for one iteration. If the budget is not exhausted after processing these top-

weighted pairs, it applies DFS: it sorts all nodes in decreasing average weight and, starting with

the top-weighted one, it prioritizes all edges in its neighborhood, except for the top-weighted

one, which has already been processed. Then, it moves to the next weighted node and so on.

The time and space complexities are the same as in node-centric scheduling.

The similarity graph is bipartite in the case of Record Linkage. Hence, for the node-centric and

the hybrid algorithms, it suffices to weight and sort only the nodes of one partition (no repeated

pairs are included in the output of Scheduling). Among these algorithms, only the Hybrid one has

already been applied to Progressive Entity Matching (see Progressive Profile Scheduling in [45]).

7 Experimental Analysis
The goal of our experimental evaluation is threefold:

(1) To identify most effective solutions per filtering type. We discuss the performance of NN, join,

blocking and sorting-based workflows in Sections 7.2, 7.3, 7.4 and 7.5, respectively.

(2) To assess the relative performance of the single best solution per filtering type in terms of

progressive recall, run-time and memory consumption. This is examined in Section 7.6.

(3) To compare the overall best solution of our architecture template with four state-of-the-art

baseline methods, namely DeepBlocker [50], Sparkly [35], Progressive Block Scheduling [45]
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D1 [44] D2 [17] D3 [17] D4 [17] D5 [26] D6 [26] D7 [26] D8 [24] D9 [17] D10 [31]

D𝛼 Rest.1 Abt Amazon DBLP IMDb IMDb TMDb Walmart DBLP IMDb

D𝛽 Rest.2 Buy GB ACM TMDb TVDB TVDB Amazon GS DBpedia

|D𝛼 | 339 1,076 1,354 2,616 5,118 5,118 6,056 2,554 2,516 27,615

|D𝛽 | 2,256 1,076 3,039 2,294 6,056 7,810 7,810 22,074 61,353 23,182

|𝐷𝑢𝑝 | 89 1,076 1,104 2,224 1,968 1,072 1,095 853 2,308 22,863

CP 7.7·10
5

1.2·10
6

4.1·10
6

6.0·10
6

3.1·10
7

4.0·10
7

4.7·10
7

5.6·10
7

1.5·10
8

6.4·10
8

Table 1. The Record Linkage data sets used in our experiments. |D𝑥 | denotes the number of entities in data
source D𝑥 , |𝐷𝑢𝑝 | the number of duplicates in the groundtruth and CP the Cartesian product.

De1 [51] De2 [34] De3 [51] De4 [33] De5 [33] De6 [33] De7 [33] De8 [33]

D Cora CDdb Product 10K 50K 100K 200K 300K

|𝐷 | 1,878 2,161 9,763 10
4

5·104
10

5
2·105

3·105

|𝐷𝑢𝑝 | 62,892 1,085 299 8,705 43,071 85,497 172,403 257,034

CP 1.8·10
6

2.3·10
6

4.8·10
7

5.0·10
7

1.3·10
9

5.0·10
9

2.0·10
10

4.5·10
10

Table 2. The Deduplication data sets used in our experiments. |𝐷 | denotes the number of entities in data
source D, |𝐷𝑢𝑝 | the number of duplicates in the groundtruth and CP the Cartesian product.

Filtering type Parameter Values

Common parameters

scheduling algorithm ∈ {DFS, BFS, TOP, HB}
budget ∈ {𝑖 × |𝐷𝑢𝑝 |, 𝑖 ∈ [1, 10]}

NN workflows

indexing scheme ∈ {smallest, largest, both}

similarity function ∈ {cosine, Euclidean}
number of nearest neighbors ∈ [1, 5, 10]
language model ∈ {The 10 models in Sec. 5.1}

Join workflows

indexing scheme ∈ {smallest, largest, both}

similarity function ∈ {cosine, Euclidean}
number of nearest neighbors ∈ [1, 5, 10]
weighting scheme ∈ {BW, TF, TF-IDF}

tokenizer ∈ {word unigrams, word bigrams,

character n-grams 𝑛 ∈ [3, 5]
Blocking workflows weighting scheme ∈ {All WS from section 5.3}

Sorting- window size ∈ [1, 2, . . . , 10]
based weighting scheme ∈ {ACF, NCF, DNCF, CNCF, ID}
workflows functionality scope ∈ {local, global}

Table 3. Configuration parameters per module.

and I-PES [11], with respect to progressive recall, run-time and memory footprint both in

Record Linkage and in Deduplication. This analysis is performed in Section 7.7.

7.1 Experimental Setup
All experiments were implemented in Python version 3.8. All experiments were executed on a

server running Ubuntu 22.04 LTS, equipped with 64GB RAM, an Intel Core i7-9700K@ 3.60GHz and

an NVIDIA GeForce RTX 2080. The technical characteristics of the datasets used in our experiments

are reported in Tables 1 and 2 for Record Linkage and Deduplication, respectively, in increasing

order of computational cost in terms of the Cartesian product (i.e., last line of the table). All datasets

are popular in the literature [17, 24, 33, 50]. See the Appendix [20] for more details.

In each dataset, we consider 10 different budgets, 𝐵𝑈1, . . . , 𝐵𝑈10, where 𝐵𝑈𝑛 = 𝑛 × |𝐷𝑢𝑝 |, with
|𝐷𝑢𝑝 | denoting the number of duplicates in the corresponding dataset. For each budget, we perform
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Scheduling Algorithm Indexing Scheme Similarity Function Language Model 𝑘

EC largest Euclidean S-GTR-T5 5

BFS both Euclidean S-GTR-T5 5
DFS both Cosine S-GTR-T5 1

Hybrid both Euclidean S-GTR-T5 5

Table 4. The best NN workflows from our design space, with the overall top performer highlighted in bold.

Fig. 4. Progressive recall and recall of the NN workflows in Table 4 across all budgets over selected datasets.

grid search, considering all solutions generated by architectural template. Table 3 summarizes

the considered solutions per filtering type. There are 180 and 270 different solutions of NN and

join workflows, respectively, while the blocking and sorting-based workflows yield 14 and 100,

respectively. These solutions are combined with the four different scheduling algorithms presented

in Section 6. Due to lack of space, we cannot report the performance of all solutions generated in this

way. Instead, for each filtering type, Sections 7.2-7.5 report only the best solution per Scheduling

algorithm with respect to the average distance from the top.
More specifically, for each dataset, budget and filtering type, we first estimate the maximum

progressive recall across all considered solutions and then, we estimate the distance of each solution

from this maximum. We call this measure “distance from the top” and formally define it as: 𝐷𝐹𝑇=1-

PR(so)/PR𝑚𝑎𝑥 , where 𝑃𝑅(𝑠𝑜) is the progressive recall of solution 𝑠𝑜 and 𝑃𝑅𝑚𝑎𝑥 the overall maximum

value. We estimate the average DFT of each solution across all datasets and budgets, and Sections

7.2-7.5 discuss the performance of the solution per scheduler with the lowest mean 𝐷𝐹𝑇 .

7.2 NN workflows
The best NN workflows per scheduling algorithm across all datasets and budgets are reported in

Table 4. They all employ the S-GTR-T5 language model, which is identified as the most effective one

in [56], too. Most solutions combine the Euclidean similarity with 5 candidates per query entity. The

only exception is DFS, where Cosine similarity takes a minor lead as long as a single candidate is

returned per query entity. This essentially means that Scheduling is applied to the nearest neighbor

per input entity, thus rendering the depth search inapplicable. Finally, most solutions index and

query both data sources, a configuration that is more robust in all datasets. Only EC exclusively

indexes the largest data source, using the smallest one as a query set. For this scheduling algorithm,

the end result is practically identical with that of indexing both data sources, due to the large
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Scheduling Algorithm Similarity Function Tokenizer Weighting Scheme IndexingScheme 𝑘

EC Cosine token unigram TF-IDF largest 10

BFS Euclidean character 5-gram TF-IDF both 5
DFS Cosine token unigram TF-IDF both 1

Hybrid Euclidean character 5-gram TF-IDF both 5

Table 5. The best Join workflows from our design space, with the overall top performer highlighted in bold.

number of repeated candidate pairs generated by the latter, which are eliminated when EC merges

them in a globally sorted candidate set.

The performance of these solutions with respect to progressive recall and to recall across all

budgets in 𝐷3 and 𝐷7-𝐷10 is reported in Figure 4. The performance for the rest of the datasets is

presented in Figure 10 in the Appendix [20], together with the detailed memory requirements and

the run-times in Figures 11 and 12, respectively. The memory footprint is around 1 GB in all cases,

as it is dominated by the high-dimensional embedding vectors of the S-GTR-T5 model, while the

differences in the run-time are insignificant, as it remains below 10 seconds in almost all cases.

Progressive recall yields two different patterns. In most datasets, 𝐷2-𝐷6 and 𝐷10, the BFS solution
is the top performer, with the Hybrid one following in close distance: in half the cases, their average

DFT, across all budgets, is practically identical, while their difference in 𝐷2, 𝐷3 and 𝐷10 is less

than 3%. The EC solution consistently ranks third in these datasets except 𝐷4, with an average

progressive recall lower than BFS by 15% to 21%. The DFS underperforms all other algorithms, with

its 𝐷𝐹𝑇 increasing with the increase of the budget. This should be expected, because it identifies a

single candidate per input entity, failing to provide more candidates, despite the largest budget.

This situation is reversed the remaining four datasets, i.e., 𝐷1 and 𝐷7-𝐷9. In these datasets,

the number of duplicates is much lower than the total number of input entities. As a result, the

candidates gathered by DFS suffice for maximizing the progressive recall. EC follows in close

distance, with BFS and Hybrid exhibiting practically identical performance, ranking last.

The above patterns apply to all budgets in the corresponding dataset, i.e., the relative performance

of the considered solutions is consistent across the 10 budgets in each dataset. This means that,

in general, there is a high correlation between DFS and EC and a stronger one between BFS and

Hybrid. The overall best NN solution applies the BFS algorithm to the 5 most similar candidates for

each input entity according to the Euclidean similarity and the S-GTR-T5 embedding vectors. To

this attests the relative performance of the NN solutions with respect to recall: BFS is consistently

the top performer in half the datasets (𝐷2,𝐷3,𝐷5,𝐷6,𝐷10) typically followed byHybrid, EC andDFS
(in that order). Only in 𝐷1, the situation is reversed, with DFS taking the lead. Yet, the differences

are much smaller (insignificant in 𝐷4, 𝐷7, 𝐷8, 𝐷9) than those progressive recall.

7.3 Join workflows
The best join workflows per scheduling algorithm across all datasets and budgets are reported

in Table 5. They all use TF-IDF, as it conveys more information than BW and TF. The BFS and

the Hybrid solutions have the same configuration, whereas the EC and the DFS differ only in the

indexing scheme and the number of nearest neighbors. The latter indexes and queries with both

data sources to ensure robustness, while the former indexes only the largest data source, because

its global sorting yields the same results as indexing both sources. DFS considers only the nearest

neighbor of per profile, performing no depth search in practice.

The progressive recall of these join solutions per scheduling algorithm across all budgets in 𝐷3

and 𝐷7-𝐷10 as well as the corresponding recall are reported in Figure 5 (refer to Figure 13 in the

Appendix [20] for the rest of the datasets alongside the memory requirements and the run-times in
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Fig. 5. Progressive recall and recall of the join workflows in Table 5 across all budgets over selected datasets.

Figures 14 and 15, respectively. Typically, the memory footprint does not exceed 100 MB, with EC
being the only approach that does not index both data sources, thus requiring significantly lower

memory. The run-times exhibit minor differences, remaining far below 10 seconds.

Regarding progressive recall, in five datasets (𝐷2, 𝐷3, 𝐷5, 𝐷6 and 𝐷10), the BFS solution exhibits

the highest values across all budgets, followed in close distance (≪ 2%) by the Hybrid configuration.

The EC configuration consistently ranks third, with an average 𝐷𝐹𝑇 that ranges from 8% (𝐷10) to

16% (𝐷3). The DFS configuration consistently underperforms all others, typically falling short of

the maximum progressive recall by at least 20%.

The remaining datasets verify the very high correlation between BFS and Hybrid, especially
during the lower budgets, where they basically yield the same candidate pairs, due to the identical

configuration. Both rank second in 𝐷4 and 𝐷7, where EC is the top performer, with DFS ranking

last, lower by 1/3, on average. The situation is reversed in 𝐷1 and 𝐷8, where the DFS configuration

outperforms all others, leaving BFS and Hybrid in the last place.

Regarding recall, the differences between the four join solutions are consistently much lower

than that of progressive recall. In four datasets (𝐷4 and 𝐷7-𝐷9), there is actually an insignificant

difference between them across all budgets. In the other datasets, BFS takes a clear lead, with

Hybrid typically following in close distance, while EC and DFS are usually ranked third and fourth,

resp. The only exception is 𝐷1, where DFS and EC are the top performers.

Overall, the best join solution applies BFS to the five most similar candidates per entity according

to the Euclidean similarity between the character 5-grams vectors with TF-IDF weights.

7.4 Blocking workflows
The best blocking workflows per scheduling algorithm across all datasets and budgets are reported

in Table 6. Note that all weighting schemes rely on the number of blocks shared by two entities. In

half the cases, normalization (by size or cardinality) is also required to increase the distinctiveness

and the accuracy of the weights.

The progressive recall alongside the recall of these four solutions across all budgets over 𝐷3

and 𝐷7-𝐷10 is reported in Figure 6. The performance over the other datasets appears in Figure

16 in the Appendix [20], both the memory requirements and the running time, in Figures 17 and

18, respectively. There are insignificant differences among the four solutions with respect to the

memory footprint, given that they basically differ in the weighting scheme, while their run-time

mostly depends on the dataset at hand.
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Scheduling Algorithm Weighting Scheme

EC CN-CBS
BFS CBS

DFS SN-CBS

Hybrid CBS

Table 6. The best blocking workflows from our design space, with the top performer highlighted in bold.

Fig. 6. Progressive recall and recall per budget of the blocking workflows in Table 6 over selected datasets.

We observe that the DFS configuration consistently underperforms all others to a significant

extent. It achieves its best performance in 𝐷1 and 𝐷5, where its progressive recall is lower than the

maximum one by 15% and 22%, on average, across all budgets, respectively. In all other datasets,

its average 𝐷𝐹𝑇 exceeds 70% – in 𝐷8 and 𝐷9, this distance raises to a whole order of magnitude.

Similar patterns pertain to recall, too.

The Hybrid configuration ranks third in most datasets with respect to both evaluation measures.

In 𝐷1 and 𝐷5, it exhibits the worst performance among all schedulers, while in 𝐷7 and 𝐷8 it follows

the top performer (BFS) in close distance.

There is a strong competition between the remaining solutions, the EC and the BFS one, both of

which excel in 5 datasets. The former scores the highest progressive recall across all budgets in 𝐷1,

𝐷2, 𝐷5, 𝐷6 and 𝐷10, and the latter in the rest. However, the difference between EC and BFS is much

higher in the datasets, where the former ranks first: on average, EC underperforms BFS by less

than 2% in 𝐷4 and 𝐷9 as well as by less than 9% in 𝐷7 and 𝐷8, whereas BFS underperforms EC by

more than 10% in 𝐷2, 𝐷5 and 𝐷6. Note that these patterns apply to recall and progressive recall.

Overall, EC with the CN-CBS weighting scheme is the overall best blocking solution.

7.5 Sorting-based workflows
The best sorting-based solutions per scheduling algorithm across all datasets and budgets are

reported in Table 7. They are all combined with the global scope of functionality. This indicates

that considering the combined evidence from multiple windows performs better than the relying

on a single window. Note that the largest window size works best for most scheduling algorithms,

allowing for a larger difference between the values of two matching entities.

The effectiveness of these solutions for all budgets in 𝐷3 and 𝐷7-𝐷10 is reported in Figure 7.

The effectiveness over the other datasets is reported in Figure 19 in the Appendix [20], while the

memory consumption and the run-time per budget and dataset is reported in Figures 20 and 21,
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Scheduling Algorithm Weighting Scheme Window Size Functionality Scope

EC ID 10 Global
BFS ACF 10 Global

DFS DICE 1 Global

Hybrid ACF 10 Global

Table 7. The best sorting-based workflows from our design space, with the top performer highlighted in bold.

Fig. 7. Progressive recall and recall per budget of the best sorting-based workflows in Table 7 over selected
datasets.

respectively. In both cases, the differences are insignificant, due to the consistently low run-time

(<10 sec) and memory footprint (<100 MB) – only DFS is slightly more memory efficient, due to the

smaller window it uses.

Regarding progressive recall, the DFS configuration consistently underperforms all others to

a significant extent, which raises to a whole order of magnitude in 𝐷7. In the best case, in 𝐷5, its

progressive recall is lower than the highest one by 1/3, on average, across all budgets. Similarly, for

recall, DFS ranks last in 7 datasets, with its average 𝐷𝐹𝑇 ranging from 15% (𝐷2) to 83% (𝐷7).

On the other extreme lie the EC and the BFS solutions, with the former being the top performer

in six datasets and the latter in the rest – this applies to both evaluation measures. In terms of

progressive recall, EC takes a major lead over BFS in half the datasets, with a progressive recall

higher by at least 10%. The only exception is 𝐷7, where their difference is slightly above 1%. In

terms of recall, the difference between the two solutions is consistently smaller, but raises above

30% in favor of EC in 𝐷1, 𝐷5 and 𝐷6.

Finally, the behavior of Hybrid depends on the evaluation measure. For progressive recall, it

consistently ranks third in all datasets where EC outperforms BFS (i.e., 𝐷1-𝐷2 and 𝐷5-𝐷8) – yet,

its progressive recall is much higher than that of DFS. In all other datasets, it ranks second, as its

performance is highly correlated with BFS. For recall, it performs well only in datasets where all

solutions have similar performance, namely 𝐷4 andn 𝐷7. In all other cases, its average 𝐷𝐹𝑇 ranges

from 13% (𝐷6) to 41% (𝐷1).

The above patterns apply to each dataset, regardless of the budget. In other words, the relative

performance of the four scheduling algorithms is not altered as the size of the budget increases.

We can conclude, therefore, that EC in combination with the ID weighting scheme, a window size

of 10 and the global functionality scope constitutes the overall best sorting-based solution.
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7.6 Overall best solution
The above experiments demonstrate that for the NN and join workflows, the BFS normally works

best in datasets with high levels of noise (i.e., large portion of missing values) and high portion

of duplicates for at least one the data sources. This applies to 𝐷2, 𝐷3, 𝐷5, 𝐷6 and 𝐷10. In datasets

where the matching entities share quite distinctive information, all Scheduling algorithms exhibit

high performance, with minor differences between them. This applies to the bibliographic datasets,

𝐷4 and 𝐷10, due to the long, distinctive attribute values characterizing each entity (e.g., titles and

author lists), as well as to 𝐷7, due to the common movie titles and director or actor names (despite

the high levels of noise). In datasets with low portion of duplicates for both data sources, i.e., 𝐷1

and 𝐷8, DFS is the top performer, when configured to search for the nearest neighbor per entity

after indexing both data sources.

For the blocking and sorting-based workflows, the BFS and EC consistently outperform the other

Scheduling algorithms. The former performs slightly better in datasets with duplicates sharing

highly distinctive information (i.e., 𝐷4, 𝐷7 and 𝐷9), whereas EC works best in all other datasets,

which exhibit with high levels of noise and/or low portion of duplicates for at least one data source.

In this context, we now compare the best solutions identified in Sections 7.2-7.5, i.e., the BFS
approach of the NN and join workflows, with the EC from the blocking and sorting-based workflows.

Their progressive recall over the Record Linkage and Deduplication datasets is reported in Figures

8 and 9, respectively.

We observe two different patterns, depending on the type of dataset. For Record Linkage, the

sorting-based solution ranks last in all datasets, but the 𝐷1, with its average 𝐷𝐹𝑇 exceeding 19% in

all datasets; the larger the budget, the higher is its 𝐷𝐹𝑇 , which indicates that only its top-weighted

pairs are indeed duplicates.

In contrast, the join solution outperforms all others to a statistically significant extend in seven

datasets (𝐷2-𝐷3, 𝐷5-𝐷8 and 𝐷10). It is actually the top performer across all budgets in all these

datasets, except for the smallest two in 𝐷6 and 𝐷7. Its performance remains very high in the

remaining datasets, too: in the bibliographic datasets (𝐷4 and 𝐷9), its difference from the top

performer (the NN solution) is statistically insignificant, while in 𝐷1, it takes the lead over the

blocking solution for the three largest budgets.

The situation is reversed in most Deduplication datasets, except for the smallest one (𝐷𝑒1), where

we observe the same patterns as in Record Linkage. In 𝐷𝑒2 and 𝐷𝑒3, the blocking solution takes the

lead, followed in close distance by the sorting-based one, with the join workflow ranking third and

fourth, respectively. However, in the five largest workflows, the sorting-based solution consistently

ranks first, with a major lead over the remaining solutions. Note that the join workflow does not

scale beyond 50,000 entities (i.e., 𝐷𝑒5), due to insufficient memory.

The run-time measurements across all budgets are presented in the Appendix [20], in Figures 23

and 25 for the Record Linkage and Deduplication datasets, respectively. The sorting-based solution

is consistently the fastest approach across all budgets, with the blocking following in close distance.

The NN and join solutions are slower by 1 or 2 orders of magnitude across all datasets. In the

smallest datasets, NN is slower than join, but the latter becomes much slower as the number of

input entities increases. This means that the join solution exhibits poor scalability, unlike the NN

one. Note that for all solutions, the size of the budget does not affect the run-time, as Filtering and

Weighting are independent of the budget. Only Scheduling is affected, albeit to a minor extent.

This significant difference in the scalability of the NN and join workflows should be attributed to

the relative cost of their vectorization, indexing and querying phases. For the former, vectorization

is typically a time-consuming process, due to the high dimensionality and the high number of

parameters of S-GTR-T5 [56]. In contrast, indexing and querying is quite efficient, due to FAISS, a
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the state-of-the-art tool for approximate nearest neighbor search [1]. In contrast, the join workflows

involve very efficient vectorization and indexing phases, with the querying one constituting the

bottleneck, as it aggregates the posting lists of all tokens associated with each query entity; the

number of tokens is high, due to the schema-agnostic settings, which consider all attribute values.

The memory footprints are presented in Figures 22 and 24 of the Appendix [20] for the Record

Linkage and the Deduplication datasets, respectively. In most cases, the memory footprint of the

NN workflows is higher by an order of magnitude than the other Filtering types, because the

former leverages very high dimensional embedding vectors, while the latter operate directly on

string values (hence, they depend heavily on the dataset size). Note, though, that the join solution

does not scale to more than 50,000, due to a two-dimensional matrix that lies at the core of its

implementation that depends on the size of the input dataset.

Overall, we can conclude that for the Record Linkage datasets, the top join workflow constitutes

the best solution, trading the highest accuracy for the lowest scalability in terms time and memory

efficiency. In contrast, the best NN workflow favors scalability over accuracy. For the Deduplication

datasets, the best sorting-based workflow outperforms all others in terms of accuracy, run-time

and memory efficiency.

7.7 Comparison to the state-of-the-art
To assess the performance of the join and NN workflows, we consider two recent state-of-the-art,

open-source filtering approaches:

(1) DeepBlocker [50] is an NN workflow that combines FAISS for indexing and querying with

self-supervised learning for improving the pre-trained embedding vectors provided by FAISS.

(2) Sparkly [35] is a join workflow that combines TF-IDF weights and BM25 scores with paralleliza-

tion on top of Apache Spark.

For their fine-tuning, we performed grid search over the two common parameters (see Table 3):

(1) the number of nearest neighbors 𝑘 ∈ [1, 5, 10]
(2) the indexing scheme, which can be {𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡, 𝑙𝑎𝑟𝑔𝑒𝑠𝑡, 𝑏𝑜𝑡ℎ}

Fig. 8. Progressive recall for the best progressive method per Filtering type and the baseline methods over
the Record Linkage datasets in Table 1.
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Fig. 9. Progressive recall for the best progressive method per Filtering type and the baseline methods over
the Deduplication datasets in Table 2.

For both methods, the best performance, which minimizes the average 𝐷𝐹𝑇 , across all budgets

and datasets, corresponds to 𝑘 = 5. Regarding the indexing scheme, DeepBlocker works best when

indexing the smallest dataset and querying with the largest one and vice versa for Sparkly. Note

that DeepBlocker uses the cosine similarity by default and that its operation is stochastic, due to

the random selection of instances to be labelled to form the automatically-created training set

during self-supervised learning. As a result, in each dataset and budget, we consider its average

performance over 5 iterations. Note also that Sparkly is combined with the character 3-grams that

optimize its performance, as shown in [35].

As an additional baseline approach, we use the best workflow generated by the Progressive

Incremental Entity Resolution framework, namely I-PES [11]. All parameters were fine-tuned

according to the experimental analysis in [11]. The available implementation, though, estimates

only recall, not the progressive one.

These three baseline methods are compared with the best join and sorting-based solutions with

respect to Progressive Recall over the Record Linkage and the Deduplication datasets in Figures 8

and 9, respectively. Starting with the former, we observe that the join solution achieves the highest

progressive recall for practically all budgets in all datasets, but the smallest one, where Sparkly

takes the lead. In all other datasets, Sparkly and DeepBlocker underperform the join solution to a

significant extent, with an average 𝐷𝐹𝑇 usually higher than 20%. Even the sorting-based solution

outperforms both Sparkly and DeepBlocker in 𝐷3.

In the Deduplication datasets, our techniques outperform again the baseline methods to a

significant extent. In the smallest dataset (𝐷𝑒1), the join workflow is the top performer, while in all

others, the sorting-based solution takes the lead. Note that DeepBlocker scales up to 𝐷𝑒6, which

involves 100,000 entities, due to a two-dimensional matrix that lies at its core (similar to the join

solution). The memory efficiency of these methods is presented in Figures 22 and 24. We observe

that the sorting-based workflow consistently exhibits the lowest memory footprint, even by a

whole order of magnitude, especially when compared to DeepBlocker. The join solution is more

memory efficient than the baselines in all Record Linkage datasets, where it achieves the highest

accuracy.
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For what concerns time efficiency, the join (and the sorting-based) solutions are consistently faster

than the baseline methods over the Record Linkage datasets (Figure 23). Over the Deduplication

datasets (Figure 25), the sorting-based solution is by far the fastest up to dataset𝐷𝑒4, which contains

10,000 entities. In larger datasets, the overhead of PySpark parallelization pays off and, thus, Sparkly

becomes the fastest approach.

Overall, our solutions consistently outperform the baselines with respect to effectiveness in

practically all budgets of all considered datasets (except for 𝐷1, where Sparkly takes the lead). They

are also quite time and memory efficient, but Sparkly excels in scalability, as it runs on PySpark.

8 Conclusions
We presented an architecture template for generating a wide diversity of Progressive Entity Match-

ing solutions based on three modules that precede the matching and the clustering algorithms in

an end-to-end ER pipeline. Through a thorough experimental analysis, we identified the four top

performing solutions, one for each combination of filtering and weighting techniques. Our solu-

tions consistently outperform the current state-of-the-art in terms of progressive recall, memory

footprint and often run-time.

In the future, we will adapt all four Filtering types to real-time ER, where the goal is to match a

query record in sub-second time [38]. For the NN and join workflows, this is a natural setting that

requires fine-tuning their index. Pre-calculated similarities can be used for blocking workflows

when the query record has already been indexed [4]. If not, Algorithm 2 should be adapted to

work with the three indexes of DySimII, whose record insertion and query times remain practically

stable, despite the increasing number of entities [40]. Finally, Algorithm 3 should integrate the

braided AVL trees used by F-DySNI [39], which optimize the record insertion and query times of

the sorting-based workflows.
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