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Abstract. Machine Learning (ML) models are used in a wide range of
applications, which affects societies either directly or indirectly in daily
life. Ensuring fairness in the decisions of these applications is a challeng-
ing task that has attracted the attention of researchers from different
fields. However, considering a single sensitive attribute when measur-
ing the fairness of a dataset or the outcomes of an ML model could be
misleading when the data contains multiple sensitive attributes. In this
paper, we study the problem of unfair decisions of the ML models for
data with multiple sensitive attributes. The sensitive attributes are used
to define the different demographic subgroups. Our study shows that the
imbalanced representation of the different demographic subgroups in the
population is one of the most important reasons behind the biased predic-
tions of the ML models. To handle this problem, we propose a framework
called ‘SynthFair’ to ensure fairness among the subgroups without chang-
ing the original class labels or removing the sensitive attributes from the
data. SynthFair uses synthetic data generation for ensuring fair classifi-
cation such that classifiers are trained on balanced datasets with similar
number of records per subgroup. Experimental results over widely used
benchmarks show that our framework yields consistent improvements
compared to a set of bias mitigation methods.

Keywords: Machine learning, fairness measures, bias mitigation algo-
rithms, clustering, synthetic data, classification

1 Introduction

The prevalence of Machine Learning (ML) in a wide range of applications has sig-
nificantly affected the daily life. Machine learning models can handle big volumes
of data for complex computational tasks. They are used for decision-making in
business and government systems [24], in recommender systems, advertisements,
hiring systems, and others. Besides, people usually have subjective opinions and
points of view that might lead to bias in their decisions, which can be avoided
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using ML models. Unfortunately, ML models are not always objective. A large
number of models have been identified to show bias against specific groups of the
society [1, 20, 26], including Amazon’s free same-day delivery and the COMPAS
recidivism estimation tool. These tools show significant discrimination against
specific neighborhood and community subgroups.

The bias in the outcomes of the ML models can be a result of the bias in the
training data, the representativeness of the classes or the absence of informative
features. In order to identify and quantify the bias in the datasets or the outcomes
of the machine learning models, different fairness measures were proposed [6, 8,
11, 12, 17, 27, 30]. Based on these measures, different bias mitigation algorithms
[3, 11, 12, 14–18, 22, 25, 29, 31–33] have been developed to reduce the bias in the
outcomes of the ML models. Most of these algorithms focus on reducing the bias
by optimizing the algorithms according to a given fairness measure. However,
there is no consensus on the best bias mitigation algorithm to be used and which
fairness measure should be considered [13].

In this paper, we propose SynthFair, a pre-processing framework that mitigates
the bias in the outcomes of the ML models. SynthFair generates synthetic data
to balance the representation of the different subgroups in the training dataset.
Obviously, the generated synthetic examples (records) belong to the under-
represented subgroups in the dataset. We use the Synthetic Minority Over-
sampling Technique (SMOTE) [4] and the conditional Generative Adversarial
Networks (cGANs) [28] to generate the synthetic data. However, it is important
to produce synthetic examples that mimic the patterns in the real data. SMOTE
interpolates the examples from a given class, which may generate examples that
are deep within the other class. Therefore, we cluster the data and generate
examples within the clusters to improve the quality of the generated examples.
This is based on the fact that original data examples in each cluster have higher
similarity to each other. After generating the synthetic data using SMOTE, we
introduce three strategies to train the classifiers: i) combine the data in all clus-
ters and train a single classifier; ii) train a classifier per cluster, assign each test
sample to the nearest cluster, and use the classifier of that cluster for predicting
the label of the test samples; iii) use a weighing mechanism to determine the
contribution of each classifier in deciding the labels of the new samples.

Moreover, we also use GANs for generating the synthetic examples as they have
been proven to be effective in generating examples that are similar to the original
examples and in capturing the statistical patterns in the data. We use a special
type of GANs that is called conditional GANs (cGANs), where we condition
the GANs to generate examples from the under-represented groups only. For
cGANs, we do not cluster the data before generating the synthetic examples so
we train a single classifier using all the training data.

To summarize, our contributions are as follows.

– We provide a theoretical analysis for mitigating the bias in datasets and ML
models’ outcomes based on the disparate impact ratio.
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– We develop a bias-mitigation framework that consistently improves the fair-
ness by generating high quality examples from the minority class.

– We introduce multiple strategies for training fair classifiers and evaluate our
framework on three real world datasets that are widely used as benchmarks
for evaluating the fairness of the ML models.

2 Background and Related Work

In this paper, we propose a pre-processing framework that mitigates bias in a
given dataset by generating synthetic examples to balance the dataset. We de-
compose the dataset D into three subsets of attributes D = {X,S, Y }. Here,
X represents the set of attributes that do not contain sensitive information
regarding individuals, S is the set of sensitive attributes containing sensitive in-
formation, and Y ∈ {−ve,+ve} is the class label. Let the +ve label represent
the favorable class label. We use Gp/Gu to represent the examples of privi-
leged/unprivileged groups, respectively. We denote the set of predicted labels

by Ŷ . It is worth noting that X,S, Y form a column-wise partitioning of the
attributes of D, while the demographic groups Gp/Gu partition the data in a
row-wise fashion. The used notations are described in Table 1.

Notation Description
D(X,S, Y ) training dataset
T (X,S, Y ) testing dataset
X the set of attributes with non-sensitive information about individuals
S the set of attributes with sensitive information

Y/Ŷ the original/predicted class labels of the instances in a given dataset, respectively
DGp DGp = {x ∈ D | S(x) = Gp} the set of records that belong to the privileged group
DGu DGu = {x ∈ D | S(x) = Gu} the set of records that belong to the unprivileged group

D+
Gp

D+
Gp

= {x ∈ DG | Y (x) = 1}
DGu+ DGu+ = {x ∈ DGu | Y (x) = 1}
N+

Gp
, N+

Gu
N+

Gp
= |D+

Gp
|, N+

Gu
= |D+

Gu
|

N+ N+ = N+
Gp

+ N+
Gu

Fmi
fairness metric

Ami
performance metric

Table 1: Notation.

After profiling a set of benchmark datasets that are used for evaluating the
fairness of the ML models, we found that the datasets are imbalanced, either
in the representativeness or in the ratio of getting the desirable class label for
the different demographic groups. Hence, we focus on solving the data imbalance
problem by proposing a framework for generating more examples from the under-
represented group/class.

2.1 Fairness Measures

The problem of algorithmic fairness has been extensively studied during the last
decade. A set of studies focused on formulating fairness measures that can de-
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termine the bias in the datasets and in the outcomes of the ML models. Other
studies focused on improving fairness according to one or more of the fairness
measures. Our work is mainly focused on proposing a pre-processing bias miti-
gation framework.

Various algorithmic fairness measures have been formulated to quantify the bias
in a dataset or the outcomes of an MLmodel. They can be used to measure bias in
different stages of the machine learning pipeline. A set of these measures ensures
the fairness between the different demographic groups such as Demographic Par-
ity [8, 17], Predictive Parity [27], Equalized Odds [30], Equal Opportunity [12],
Overall Accuracy Equality [2] and Treatment Equality [2]. These measures en-
sure that the rate of getting the favorable class label is almost the same for the
different demographic groups. Other fairness measures consider the outcomes on
the individual level. Examples of this type of fairness measure include individual
fairness [8] and Consistency [32]. These measures consider an algorithm to be
fair if it provides the same output for two individuals who have different values
only in the sensitive attributes. In what follows, we provide formal definitions of
five common fairness measures that are also used in our study.

Demographic Parity (DP): this measure states that the instances in both
unprivileged and privileged groups should have equal probability of getting the

favorable class label. That is: P
[
Ŷ = 1 | S = Gu

]
= P

[
Ŷ = 1 | S = Gp

]
. The

same definition can be applied to measure the bias in the original dataset by
substituting Ŷ by the original labels Y .

Disparate Impact Ratio (DIR): is defined as the ratio between the probabil-
ity of privileged and unprivileged groups getting the positive outcomes. Accord-
ing to the American Civil Rights Act [9], a dataset or a classifier is considered
fair if its DIR is at least 0.8. DIR can be formulated as:

DIR(D) =
P
[
Ŷ = 1|S = Gu

]
P
[
Ŷ = 1|S = Gp

] , (1)

to measure the fairness of the ML model. Our target is increasing DIR such that
it becomes greater than 0.8, ideally reaching 1.

Equalized Odds (EO): this measure states that instances from privileged
and unprivileged groups should have equal True Positive Rate (TPR) and False
Positive Rate (FPR). That is:

P
[
Ŷ = 1 | S = Gu, Y = 1

]
= P

[
Ŷ = 1 | S = Gp, Y | = 1

]
∧

P
[
Ŷ = 1 | S = Gu, Y = 0

]
= P

[
Ŷ = 1 | S = Gp, Y = 0

]
.
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Predictive Parity: to deem a classifier as fair in terms of predictive parity, both
protected and unprotected groups should have the same positive predictive value.

It is formalized as: P
[
Y = 1 | Ŷ = 1, S = Gp

]
= P

[
Y = 1 | Ŷ = 1, S = Gu

]
.

Consistency: this individual fairness measure determines how similar the labels
are for similar instances in a dataset based on the k-neighbors of the instance.
Thus, instances should have the same labels if they are similar in terms of fea-
tures. This measure is formulated as:

Consistency = 1− 1

|D|

|D|∑
i=1

∣∣∣∣∣∣ŷi − 1

k

∑
xj∈kNN(xi)

ŷj

∣∣∣∣∣∣ ,
where kNN(x) represents the set of the closest k neighbors of instance x.

It should be noted that statistical measures cannot guarantee fairness for indi-
viduals or more fine-grained sub-groups of the unprivileged groups [6]. Moreover,
treating the individuals similarly does not necessarily imply fair treatment. Fur-
thermore, there is a disagreement among different fairness measures since their
goals and the considered criteria are different, which is formalized and proven
with the impossibility theorem [5, 19, 21]. According to this theorem, it is im-
possible to satisfy both equalized odds and predictive parity.

2.2 Bias Mitigation Algorithms

There are several bias mitigation techniques (algorithms) that improve fairness
while taking the performance of ML models in consideration. These algorithms
fall in three categories:

Pre-processing algorithms solve the problem by mitigating the bias in the
training data so classifiers do not learn the bias. Examples include preferen-
tial sampling [14] and oversampling techniques such as massaging [15]. Other
techniques remove causal relationship between the sensitive attributes and the
decision variable such as interventional fairness [25], or change the weight of
the records (e.g., reweighing [3]). In learning fair representations (LFR) [32],
the goal is to find an appropriate intermediate representation of a given dataset
that encodes the data as accurately as possible while concealing any informa-
tion about the sensitive attributes. Fair class balancing [29] on the other hand,
balances the classes without considering the subgroups.

In-Processing Algorithms train the classifiers to improve the fairness accord-
ing to a specific measure instead of focusing only on the performance measures.
They are mostly limited to the chosen classifier. Zafar et al. [31] used regu-
larized logistic regression and regularized support vector machines. Kamishima
et al. [17] proposed regularized prejudice remover, which can be applied on any
probabilistic classifier. Adversarial learning is used as an in-processing technique
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Datasets German Adult COMPAS
Ratios SG (%) +ve (%) -ve (%) SG (%) +ve (%) -ve (%) SG (%) +ve (%) -ve (%)
a1: 0, a2: 0 10.5 5.8 4.7 4.8 1 3.8 49.8 22.1 27.7
a1: 1, a2: 0 20.5 14.3 6.2 21.7 6.5 15.2 30.7 18.3 12.4
a1: 0, a2: 1 8.5 5.2 3.3 7.5 3.5 4 10.4 6.6 3.8
a1: 1, a2: 1 60.5 44.7 15.8 66 39 27 9.1 5.9 3.2

Table 2: The ratios of the subgroups that exist in the German, Adult and
COMPAS datasets. These datasets are widely used for testing bias mitigation
algorithms. The attributes “a1” and “a2” correspond to the sensitive attributes
([Age, Gender] in German, [Gender, Race] in Adult, and [Gender, Race] in COM-
PAS) and (+ve = positive, and -ve = negative)

to ensure fairness in [33]. Ristanoski [22] proposed an empirical loss-based tuning
on support vector machines.

Post-Processing Algorithms change the predicted outcomes of classifiers
based on certain rules or constraints to ensure fairness. This type of algo-
rithms include reject option classification [16], ensure equalized odds [12], avoid
proxy discrimination and avoid unresolved discrimination [18]. Unfortunately,
the post-processing might incur ethical considerations when adjusting labels of
examples that might deserve to receive the favorable class label.

3 Theoretical Analysis

In this section, we perform a theoretical analysis to improve algorithmic fairness.
In our analysis, we target to minimize the impact of improving fairness on the
performance of the classifiers.

Even though the fairness definitions based on the measures given in Section 2.1
are clear, there is no agreement on what should be considered fair. For example,
for an ML model to be deemed fair according to the the equalized odds (EO),
the difference between the terms on the different side of the equal sign should
be close to 0. However, there is no agreement on the cutoff value to consider
the algorithm as fair or not. The only exception is the Disparate Impact Ratio
(DIR) which is based on the 80% rule defined in US law. For this reason, in our
analysis, we focus on improving the DIR.

How to increase the value of the DIR? Let |D| be the number of instances
in the dataset D, N+ be the total number positive examples in the dataset,
N+

Gp
/N+

Gu
be the number positive examples from the privileged/unprivileged

groups, respectively. Let ξ be the percentage value of DIR that is computed
from the original dataset (DIR(D) = ξ/100). Our goal is to increase the value of
DIR by δ/100, with 0 < δ < 125 − ξ, to make DIR(C) close to or greater than
80%, where C is a given classifier. To do so, we should increase (or decrease)
the number of positive predictions from the unprivileged (privileged) groups.
However, increasing the positive predictions of the unprivileged groups is favored
because of the ethical considerations.
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Let p(Y = 1 | S = Gp) =
N+

Gp

NGp
, and p(Y = 1 | S = Gu) =

N+
Gu

NGu
. Since,

DIR(D) = ξ% then:

N+
Gu

/NGu

N+
Gp

/NGp

=
ξ

100
and N+

Gu
=

ξNGu
N+

Gp

100NGp

. (2)

To increase the value of DIR(C) to (ξ + δ)%, we need:(
N+

Gu
+ ϵ
)
/NGu(

NGp
− γ
)
/NGp

=
ξ + δ

100
, (3)

where ϵ is the number of instances (records) from the unprivileged group that
should be predicted positive while their original label is negative. Conceptually, ϵ
can take any integer value between 0 and (NGu

−N+
Gu

). Conversely, 0 < γ < N+
Gp

is the number of instances from the privileged group that should be predicted
negative while their original label is positive. Solving for ϵ and γ, we first get:(

N+
Gu

+ ϵ
)
NGp(

N+
Gp

− γ
)
NGu

=
ξ + δ

100
. (4)

Substituting N+
Gu

from Eq. (2) in Eq. (4), we get:

(ξ + δ)
(
N+

Gp
− γ
)
NGu

= 100NGp

(
ξNGu

N+
Gp

100NGp

+ ϵ

)
. (5)

Hence: 100ϵNGp
+ γ (ξ + δ)NGu

= δN+
Gp

NGu

Consequently, we can distinguish between three special cases: 1) ϵ = γ: we
need to increase the positive predictions from the unprivileged group by ϵ =

δN+
Gp

NGu

100NGp+(ξ+δ)NGp
and decrease the positive predictions from the privileged group

by the same number. 2) γ = 0: we need to increase the positive predictions from

the unprivileged group by ϵ =
δN+

Gp
NGu

100NGp
while keeping the same number of

positives from the privileged group. 3) ϵ = 0: we need to decrease the positive

predictions from the privileged group by γ =
δN+

Gp
NGu

(ξ+δ)NGu
while keeping the same

number of positives from the unprivileged group.

Proposition 1. Since the number of instances (records) from the unprivileged
group is significantly smaller than the number of instances from the privileged
group, it can be easily shown that increasing the number of positive records of
the unprivileged group while keeping the number of positives from the privileged
group unchanged will incur the minimum number of changes (case 2: γ = 0).
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Our solution: based on Proposition 1, mitigating the bias in the outcome of
the ML models can be, preferably, achieved by increasing the number of posi-
tive predictions for instances from the unprivileged group. In this work, we use
SMOTE [4] for generating synthetic examples from the minority groups. We im-
prove the quality of the generated instances by interpolating the most similar
instances by clustering the instances before applying SMOTE. In this way, we
make sure that there are enough examples with the positive label from the un-
privileged group to train unbiased models. We expect this solution to increase
the probability of the positive predictions for the unprivileged group.

Effects of increasing the DIR value: it is clear that improving the DIR
measure would affect the performance measures. For example, with an oracle
classifier (that has 100% accuracy), then according to Eq. (3), increasing DIR by
δ will have the following effects: i) True Positives (TP) will be decreased by γ (i.e.
TP ′ = TP − γ). ii) True Negatives will be decreased by ϵ (i.e. TN ′ = TN − ϵ);
iii) The False Positives (FP) will be increased by ϵ (FP ′ = FP + ϵ) and the
False Negatives (FN) will be increased by γ (FN ′ = FN + γ). Thus, the oracle

classifier’s accuracy will be decreased by
(

γ+ϵ
|D|

)
. If F ′

1 is the new F1-Score,

then F ′
1 = 2∗(TP−γ)

2∗TP+FN+FP+ϵ−γ . For the case of perfect classifier, F1 = 1 and

F ′
1 = 2(TP−γ)

2TP−γ+ϵ . The decrease in the F1-Score will be 1− 2(TP−γ)
2TP−γ+ϵ .

4 The SynthFair Framework

The SynthFair framework consists of three main steps: i) data preparation step
where we identify the subgroup IDs of each example; ii) synthetic data generation
step; and iii) classification step. The three steps are summarized in Algorithm 1.

4.1 Data Preparation

In the preparation step, we identify the subgroup IDs, add this information as a
new variable to the dataset, and split the dataset into training and testing with
stratification. We assume that the sensitive attributes and the label are binary
attributes. In our experiments, we have two binary sensitive attributes and one
binary class label in every dataset. The subgroup that has unfavorable values in
both sensitive attributes is considered the most unprivileged subgroup, whereas
the subgroup with favorable values for both sensitive attributes is considered the
most privileged subgroup. The other subgroups that have different combinations
of favorable and unfavorable values for different sensitive attributes are inter-
preted as both privileged and unprivileged subgroups. We believe that reducing
the bias between the most privileged/unprivileged subgroups will minimize the
bias between all the subgroups in the dataset.

After adding the subgroup ID variable, the sensitive attributes are removed from
the dataset since the new subgroup IDs contain information regarding these
sensitive attributes. Moreover, if a dataset contains a set of numerical variables,
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Algorithm 1 The SynthFair Framework

Input: data D = {x1, ..., xn}, train-test split ratio ρ, sensitive attributes S, label Y ,
Strategy, SDG ∈ {SMOTE, cGANs}
Output: Fairness and Performance measures’ values.

1: for each x ∈ D do
2: Gx ← subgroup(x , S, Y ) // Identify subgroup ID
3: end for
4: AGx ← {Gx, ∀x ∈ D} // Create an attribute for subgroup IDs
5: Dtrain, Dtest ← Split(D, train, test, ρ)
6: if SDG Tech == SMOTE then
7: CS = SMOTE Gen(Dtrain) // Cluster set CS from SMOTE algorithm
8: else
9: cGAN model = cGANs(Dtrain)
10: ma = argmax

AGx⊆Dtrain

|AGx |

11: for AGx in Dtrain do

12: A
′
Gx
← cGAN model.generate (AGx ,ma)

13: D′
train ← Dtrain ∪A

′
Gx

14: end for
15: end if
16: if Strategy == 1 then
17: D′

train ←
⋃

Ci∈CS C′
i

18: Train a model M using D′
train

19: end if
20: if Strategy == 2 or Strategy == 3 then
21: for i = 1 to m do
22: train a model Mi using C′

i data
23: end for
24: end if
25: labels ← {}
26: for x ∈ Dtest do
27: labels ← labels ∪ {(x , class(x ))}
28: end for
29: for subgroup in subgroups do
30: Calculate fairness and performance measures
31: end for

these variables are standardized (scaled to a specific range) in both training
and test sets separately. This step ensures that no variables can dominate the
calculation of distance metrics during the various steps.

4.2 Synthetic Data Generation (SDG)

From the subgroup IDs, we identify the subgroup that has the maximum num-
ber of examples. After that, we generate synthetic examples from the other
subgroups such that the final training set contains the same number of examples
from each subgroup. We deploy two methods for generating the synthetic exam-
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ples, namely, the Synthetic Minority Oversampling Technique (SMOTE) [4] and
the conditional Generative Adversarial Networks (cGANs) [28].

SMOTE: creates new synthetic examples by linearly interpolating two exam-
ples that are close to each other in the feature space and belong to the same
class. The generated examples are produced along the lines that connect the
existing examples. A major drawback of SMOTE is that it might introduce the
artificial minority class examples too deeply in the majority class space. Because
of that, the interpolated examples that are used to generate the new example
must be close enough to each other. Therefore, we cluster the training data into
groups such that the used examples for oversampling are close to each other.

Clustering: for clustering the training data, we use the fuzzy c-means clus-
tering [23], which is a soft clustering algorithm that allows each example in a
dataset to be assigned to more than one cluster. In fuzzy clustering, each exam-
ple belongs to a cluster with a certain probability which adds up to 1 in total.
In fuzzy c-means, clusters are formed based on a distance measure (such as Eu-
clidean distance), which is used to calculate (and minimize sum of) the distances
between the examples and the assigned cluster centroids. Thus, it is important
to apply standardization on the numerical features of the datasets to prevent an
unjustified domination these features as we mentioned earlier in the data prepa-
ration step. Since fuzzy c-means requires the number of clusters to be given as
an input, we run the fuzzy c-means multiple times using a predefined set of val-
ues for the number of clusters. In each run, we compute the fuzzy partition
coefficient (FPC) and the silhouette score. We choose the number of clusters
that yields the best combination of these two values. Let CS = {cs1, . . . , csk} be
the set of clusters. After partitioning the training set into k clusters CS, using
the cluster memberships of training examples, we generate synthetic examples
to balance the subgroups within each cluster.

Classification: in this step, a classification algorithm of choice or multiple clas-
sification algorithms are trained according to one of three strategies:

Stra1) Using Single Classification Model: After generating the required examples
in each cluster, the clusters are concatenated together to form a single large
training set. Using this balanced dataset, a classifier is trained and the labels
are predicted based on its decisions.

Stra2) Using Cluster Membership for Prediction: The data in each cluster is used
to train a different classifier. Examples from the test set are initially assigned
to the cluster that returns the highest membership probability. Then, the label
of a given test example that is assigned to cluster csj is decided based on the
outcome of the classifier that was trained using the data in the cluster csj .

Stra3) Using Weighted Cluster Memberships for Prediction: Similar to the Stra2,
we train multiple classifiers using the data in each cluster (one classifier per
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cluster). However, instead of choosing one classifier in Stra2, all the trained
classifiers are taken into consideration when predicting the class label of a test
example. First, the fuzzy c-means model is used to retrieve the membership
probabilities of the test example to the clusters that include examples with
the same subgroup ID as the test example. After that, we use the membership
probabilities as a weight for the predicted class label from each corresponding
classifier. That is, for a test example ei with a subgroup id r, and CSr ⊆ CS
be the subset of clusters that include examples from the subgroup r, Ỹ (ei) =∑

csj∈CSr
w(ei, csj)Cj(ei), where w(ei, csj) =

p(ei∈csj)∑
csq∈CSr

p(ei∈csq)
and Cj(ei) is

the outcome of classifier Cj , which was trained on csj , for ei. Finally, we assign

the class label based on the value of ỹ(ei) such that ỹ(ei) > 0.5 =⇒ Ŷ (ei) =

+ve, and Ŷ (ei) = −ve, otherwise.

CGAN Because of the high performance of the Generative Adversarial Net-
works [10] in creating synthetic data, we used a specific type of GANs that is
called cGAN [28]. With cGANs, a set of conditions can be specified to decide
the number and the shape of the synthetic examples as they can model com-
plex distributions. In our framework, we specify the conditions on the subgroups
IDs to generate examples from all subgroups except the subgroup with the max
number of examples in the training set. Since the training process requires a
large number of examples to learn from, we use all the examples in the initial
training set to train the cGANs. For this reason, we do not use the previous
strategies. Instead we train a single model using the new training set with the
same number of examples from each subgroup.

5 Evaluation

To evaluate the performance of the SynthFair framework in terms of fairness
and performance, we compared SynthFair with two bias mitigation methods.
We used three benchmark datasets that are widely used for evaluating the fair-
ness algorithms. The different methods are evaluated in terms of the Disparate
Impact Ratio (DIR), Equalized Odds Difference (EOD) and consistency (Cons.)
as fairness measures. For measuring the classification performance, we report the
results for the accuracy and the F1-Score.

5.1 Datasets

We have used three datasets that are widely used in the fairness domain. We
have chosen the German Credit dataset as a representative of small datasets and
UCI Adult dataset as a representative of relatively large datasets [7] while the
COMPAS dataset is obtained from ProPublica Data Store3. “Charge descrip-
tion” column in the COMPAS dataset and “native country” column in the Adult

3 Article and dataset are available at [propublica] [accessed 20 Aug. 2024]

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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dataset were removed to reduce the dimensionality of the datasets after applying
the one-hot encoding of the categorical variables. All the datasets contain two
binary sensitive attributes and a binary decision label in our experiments. The
details regarding each dataset can be found in Table 3.

5.2 Benchmark Methods

Our framework is compared to three different benchmark methods. The first
benchmark is a standard logistic regression algorithm with no bias mitigation.
The second one is a pre-processing technique, which is the Learning Fair Rep-
resentations (LFR) from [32]. Finally, the third benchmark is an in-processing
technique, which is the Adversarial Debiasing, introduced in [33]. The LFR is
trained with logistic regression classifier. The Adversarial Debiasing also works
with built-in logistic regression classifier. For SynthFair, when generating the
synthetic data using SMOTE, we compare three classification models, namely,
Logistic Regression (LR), Random Forests (RF) and Gradient Boosting Trees
(GBT). When the data is generated using cGANs, we report only the best results
that we get using one of the three classifiers or a neural network classifier4.

Dataset Adult German COMPAS

Domain Income Credit approval Criminal risk

Attributes 14 20 51

Instances 48842 1000 7918

S. Attributes Gender, Race Age, Gender Gender, Race

Privileged Group (Male, Caucasian) (≥ 40, Male) (Female, Caucasian)

Labels (+ve, -ve) (≥ 50k, < 50k) (Approved, Not) (No Rec., Rec.)

Table 3: Characteristics of the datasets that are used in the experiments. The
used abbreviations: (S. Attribute = Sensitive attributes, and Rec. = Recidivate).

5.3 Experimental Setup

We have implemented our framework in Python and imported AIF360 library5

to execute the benchmark methods. We collected the values for the fairness mea-
sures that were explained in Section 3 and two performance measures {Accuracy
(Acc.), and the F1 Score (F1)}. However, due to space limitations, we report the
results of EOD, DIR and Cons. We have conducted three main experiments in
total and used ten-fold cross validation with the randomized train/test split per
dataset and reported the averages of the results over the different runs6. In the
first experiment, the three different strategies that are implemented with Syn-
thFair framework are compared with each other on the German Credit dataset

4 The implementation of our framework can be found in the [GitHub Repo.]
5 https://github.com/Trusted-AI/AIF360
6 More results and detailed discussions are available at [Fairness Thesis]

https://github.com/bendiste/Algorithmic-Fairness
https://github.com/Trusted-AI/AIF360
https://studenttheses.uu.nl/handle/20.500.12932/40070
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to find the most optimal strategy (see Table 4). The most unprivileged (a1: 0,
a2: 0) and privileged (s1: 1, s2: 1) subgroups are used to calculate the measures.
In the second experiment, every possible subgroup combination as privileged
and unprivileged groups is compared with each other to check the improvement
in fairness measures between these subgroups. In the experiment, only the sub-
group having a favorable value for both sensitive attributes (a1:1, a2:1) is always
privileged, and the subgroup with values (a1:0, a2:0) is always unprivileged in
the comparisons. The other subgroups can be compared as both privileged and
unprivileged groups (see Table 5). In the third experiment, the benchmark meth-
ods are compared against SynthFair framework on the three datasets. All the
fairness measures are calculated by comparing the most unprivileged (a1:0, a2:0)
with the most privileged (a1:1, a2:1).

Cl. Tech. EOD DIR Cons. Acc. F1

LR

N M 0.252 0.631 0.835 0.759 0.837
Stra1 0.075 0.768 0.776 0.701 0.773
Stra2 0.053 0.833 0.746 0.698 0.775
Stra3 0.021 0.897 0.749 0.685 0.759
GANs 0.014 0.843 0.862 0.793 0.814

N M 0.112 0.811 0.834 0.756 0.839
Stra1 0.023 0.899 0.814 0.749 0.831
Stra2 0.020 0.954 0.794 0.744 0.827
Stra3 0.016 0.911 0.801 0.749 0.832

RF

GANs 0.068 0.928 0.930 0.723 0.832

N M 0.096 0.793 0.811 0.757 0.835
Stra1 0.006 0.881 0.796 0.738 0.814
Stra2 0.030 0.956 0.775 0.727 0.808
Stra3 0.049 0.972 0.777 0.731 0.811

GBT

GANs 0.021 0.955 0.880 0.706 0.816

Table 4: Comparing the performance of Logistic Regression (LR), Random
Forests (RF) and Gradient Boosting Trees (GBT) on German Credit dataset.
The comparison is between the most privileged/Unprivileged subgroups (i.e.,
a1:0, a2:0 vs. a1:1, a2:1).

5.4 Results and Analysis

Comparing Classification Strategies for the Optimal Framework Con-
struction: The averaged results on all datasets with different classifiers show
that the third strategy (SynthFair with Stra3) performs the best among other
strategies in achieving a high DIR. It also causes the minimal loss in performance
measures among other strategies (see the results with German dataset on Table
4). Even though it looks like Random Forest classifier is not the best combination
with SynthFair with Stra3 according to Table 4, it is the most consistent clas-
sifier with our framework in terms of providing high fairness scores (EOD, and
DIR) while having minimal trade-off in other fairness and performance measures
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Subgroups (Gp vs. Gu) EOD DIR DPD PPD Cons.

A: 0, S: 0 vs A: 1, S: 0 0.02 0.95 0.04 0.15 0.80

A: 1, S: 0 vs A: 0, S: 1 0.02 1.20 0.07 0.10 0.80

A: 0, S: 1 vs A: 1, S: 1 0.06 0.89 0.10 0.10 0.80

A: 0, S: 0 vs A: 0, S: 1 0.04 1.06 0.02 0.05 0.80

A: 1, S: 0 vs A: 1, S: 1 0.04 0.97 0.03 0.00 0.80

A: 0, S: 0 vs A: 1, S: 1 0.02 0.91 0.07 0.15 0.80

Table 5: Evaluating SynthFair using the pairwise comparison of the subgroups
using the German dataset. Sensitive attributes are (A = age and S = sex).

Data Tech. EOD DIR Cons. Acc. F1

Original DF - 0.748 0.682 - -

LR 0.252 0.631 0.835 0.759 0.837

LFR 0.123 0.764 0.985 0.650 0.745

Adv. Deb. 0.362 0.570 0.983 0.683 0.798G
e
rm

a
n

SynthFair 0.022 0.914 0.803 0.743 0.827

Original DF - 0.235 0.848 - -

LR 0.260 0.248 0.937 0.816 0.821

LFR 0.087 0.463 0.975 0.720 0.520

Adv. Deb. 0.238 0.088 0.999 0.794 0.506A
d
u
lt

SynthFair 0.126 0.370 0.845 0.794 0.793

Original DF - 0.688 0.675 - -

LR 0.481 0.429 0.967 0.677 0.710

LFR 0.270 0.641 0.999 0.647 0.666

Adv. Deb. 0.485 0.420 0.998 0.664 0.696

C
O
M

P
A
S

SynthFair 0.151 0.712 0.796 0.627 0.657

Table 6: Comparing SynthFair trained with random forests classifier against
logistic regression (LR), Learning Fair Representation (LFR), and adversarial
Debiasing (Adv. Deb.). Both LFR and Adv. Deb. use logistic regression.

when all of the experimented datasets are considered. Moreover, it shows more
consistent results that can be explained by the small standard deviation val-
ues that we observed during the experiments but could not present here due to
space limitations. Thus, we recommend using SynthFair with the Stra3 strategy
and Random Forest classifier. The cGANs show promising results. We recom-
mend SynthFair with Stra3 over cGANs because of the high computational cost
and the inconsistent results on the other datasets. Improving the computational
complexity and the quality of the generated data for cGANs is left for future
work.

Effect of SynthFair on All Subgroups: The results of using SynthFair with
Random Forest classifier on German dataset show that all the EOD values are
lower than 0.06, all the DIR are above the threshold of 0.8, and the DP Differ-



ences are also smaller than 0.1, which means that SynthFair improves fairness
satisfactorily in this dataset for all possible combinations of privileged and un-
privileged subgroups. Having values greater than 1.0 in DIR means that the
subgroup considered as the unprivileged group is actually more privileged than
the subgroup considered as the privileged group in the equation. For example,
in Table 5, the DIR on the second row is 1.119, which means that the subgroup
“age:1, sex:0” is more privileged than the subgroup “age:0, sex:1”. However,
since the value is smaller than 1.2, it is still considered as satisfactorily fair.

Comparing SynthFair with Baseline Methods: The results indicate that
SynthFair with the third strategy successfully decreases the EOD and increases
the DIR consistently. Depending on the severeness of the bias in the dataset, DIR
does not always reach the minimum threshold, which is 0.8. However, our solution
outperform the other benchmarks in most of the cases in terms of both EOD and
DIR, which can be seen in Table 6. Only in the Adult dataset, LFR outperforms
the SynthFair in terms of the DIR by 2%. Furthermore, SynthFair with Random
Forest yields the minimum loss when all of the performance measures in the
experiments are compared to other mitigation techniques (LFR and Adversarial
Debiasing) in most cases. It is found that the other benchmarks perform better
at achieving a higher Consistency score, although our framework does not cause
a significant decrease in this score, which is not more than a 0.1 decrease in most
of the cases. The standard deviation scores reveal that our results in different
randomized runs provide consistently similar improvements in results compared
to other benchmark methods. It should be noted that Adversarial debiasing
algorithm has a significantly low score of 0.88 in DIR, because it could not
predict any positive outcomes for the unprivileged subgroup in several runs.

6 Conclusion

We studied the bias problem in ML as data imbalance problem, where there is
an unequal representation of the different subgroups in terms of positive and
negative outcomes in the datasets. We proposed the SynthFair framework as a
pre-processing bias mitigation technique that has a minimum explicit interven-
tion to the machine learning pipeline since it changes neither the original class
labels of a dataset, nor any classification algorithm’s training structure. Our so-
lution provides consistent improvements in achieving higher fairness measures
among different subgroups while maintaining the classifier’s performance. Synth-
Fair can be integrated with different clustering, oversampling, and classification
algorithms to find a customized solution that works best for any given dataset.
The directions to improve the SynthFair framework include but are not lim-
ited to studying more synthetic data generation techniques that might generate
high-quality examples, proposing a method for determining the quality of the
synthetic examples, and improving the computational complexity of the cGANs
as well as the quality of their generated examples.
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