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Abstract. Defining access control policies in a data integration scenario
is a challenging task. In such a scenario typically each source specifies
its local access control policy and cannot anticipate data inferences that
can arise when data is integrated at the mediator level. Inferences, e.g.,
using functional dependencies, can allow malicious users to obtain, at the
mediator level, prohibited information by linking multiple queries and
thus violating the local policies. In this paper, we propose a framework,
i.e., a methodology and a set of algorithms, to prevent such violations.
First, we use a graph-based approach to identify sets of queries, called
violating transactions, and then we propose an approach to forbid the
execution of those transactions by identifying additional access control
rules that should be added to the mediator. We also state the complexity
of the algorithms and discuss a set of experiments we conducted by using
both real and synthetic datasets. Tests also confirm the complexity and
upper bounds in worst-case scenarios of the proposed algorithms.

1 Introduction

Data integration offers a convenient way to query different data sources while
using a unique entry point that is typically called mediator. Although this abil-
ity to synthesize and combine information maximizes the answers provided to
the user, some privacy issues could arise in such a scenario. The authorization
policies governing the way data is accessed are defined by each source at local
level without taking into consideration data of other sources. In relational and
other systems, data constraints or hidden associations between attributes at the
mediator level could be used by a malicious user to retrieve prohibited informa-
tion. One type of such constraints are the functional dependencies (FDs). When
FDs are combined with authorized information, they may allow the disclosure of
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some prohibited information. In these cases, there is a need for providing addi-
tional mechanisms at the mediator level to forbid the leakage of any prohibited
information.

In this work we aim at assisting administrators in identifying such faults and
defining additional access control rules at the mediator level to remedy the infer-
ence problem. Given a (relational) schema of the mediator, the sources’ policies
and a set of FDs, we propose a set of algorithms that are able to identify vio-
lating transactions. These transactions correspond to sets of queries that violate
the sources’ policies if used in conjunction with FDs. To avoid the completion
of a transaction, and therefore the violation of any source’s policy, we propose a
query cancellation algorithm that identifies a minimum set of queries that need
to be forbidden. The identified set of queries is then used to generate additional
rules to be added to the existing set of rules of the mediator.

The reminder of the paper is organized as follows. Section 2 gives an overview
of research effort in related areas. Section 3 provides definitions of the main (tech-
nical) concepts we use in the paper. Section 4 introduces a motivating scenario,
the integration approach and challenges posed by functional dependencies. In
Section 5 we describe our methodology. Section 6 describes the detection phase
that identifies the policy violations. Section 7 describes the reconfiguration phase
that deals with flaws identified in the detection phase. Section 8 describes the
experiments. Finally, we conclude in Section 9.

2 Related Work

Access control in information integration is a challenging and fundamental
task to be achieved [7]. In [3], the authors consider the use of metadata to model
both purposes of access and user preferences. Our work does not consider these
concepts explicitly, but they could be simulated by using predicates while defin-
ing the authorization rules. The authors of [14] analyzed different aspects related
to access control in federated contexts [25]. They identified the role of adminis-
trators at mediator and local levels and proposed an access control model that
accommodates both mediator and source policies. In [21], the authors propose
an access control model based on both allow and deny rules and algorithms that
check if a query containing joins can be authorized. This work, like the previous
one, does not consider any association/correlation between attributes or objects
that can arise at global level when joining different independent sources.

Sensitive associations happen when some attributes, when put together,
lead to disclosure of prohibited information. Preventing the access to sensitive
associations became crucial (see, e.g., [2, 11]) in a distributed environment where
each source could provide one part of it. In [2], the authors proposed a distributed
architecture to ensure no association between attributes could be performed
while in [11] fragmentation is used to ensure that each part of sensitive informa-
tion is stored in a different fragment. In [12], the authors propose an approach to
evaluate whether a query is allowed against all the authorization rules. It targets



query evaluation phase while our goal is to derive additional authorization rules
to be added to the mediator.

In [28], the authors provide an anonymization algorithm that considers FDs
while identifying which portion of data needs to be anonymized. In our case, we
focus on defining access control policies that should be used to avoid privacy
breaches instead of applying privacy-preserving techniques [16].

Inferences allow indirect accesses that could compromise sensitive informa-
tion (see [15] for a survey). A lot of work has been devoted to the inference
channel in multilevel secure database. In [13] and [26] for each inference chan-
nel that is detected, either the schema of the database is modified or security
level is increased. In [13], a conceptual graph based approach has been used
to capture semantic relationships between entities. The authors show that this
kind of relationships could lead to inference violations. In [26], the authors con-
sider inference problem using FDs. This work does not consider authorization
rules dealing with implicit association of attributes; instead, the authors assume
that the user knows the mapping between the attributes of any FD. Other ap-
proaches such as [9, 27] analyze queries at runtime and if a query creates an
inference channel then it is rejected. In [27], both queries and authorization
rules are specified using first order logic. While the inference engine considers
the past queries, the functional dependencies are not taken into account. In [9],
a history-based approach has been considered for the inference problem. The
authors have considered two settings: the first one is related to the particular
instance of the database. The second is only related to the schema of both re-
lations and queries. In our work, we focus on inferences to identify additional
access rules to be added to the mediator. In [17], we investigated how join queries
could lead to authorization violations. In this current paper, we generalize the
approach in [17] by considering the data inference problem.

3 Preliminaries

Before describing our approach, a number of introductory definitions are needed:

Definition 1 (Datalog rule). [1] A (datalog) rule is an expression of the form
R1(u1):−R2(u2), ..., Rn(un), where n ≥ 1, R1, ..., Rn are relation names and
u1, ..., un are free tuples of appropriate arities. Each variable occurring in u1

must also occur in at least one of u2, ..., un.

Definition 2 (Authorization policy). An authorization policy is a set of au-
thorization rules. An authorization rule is a view that describes the part of data
that is prohibited to the user. An authorization rule will be expressed using an
augmented datalog rule. This augmentation consists in adding a set of predicates
characterizing the users to whom the authorization rule applies.

Definition 3 (Violating Transaction). A violating transaction T is a set of
queries such that if they are executed and their results combined, they will lead
to disclosure of sensitive information and thus violating the authorization policy.



Definition 4 (Functional Dependency). [23] A functional dependency over
a schema R (or simply an FD) is a statement of the form:
R : X → Y (or simply X → Y whenever R is understood from the context),
where X, Y ⊆ schema(R). We refer to X as the left hand side (LHS) and Y as
the right hand side (RHS) of the functional dependency X → Y.

A functional dependency R : X → Y is satisfied in a relation r over R,
denoted by r |= R : X → Y , iff ∀ t1, t2 ∈ r if t1[X] = t2[X], then t1[Y ] = t2[Y ].

Definition 5 (Pseudo transitivity rule). [23] The pseudo transitivity rule is
an inference rule that could be derived from Armstrong rules [5]. This rule states
that if X → Y and YW → Z then XW → Z.

Without loss of generality we consider functional dependencies having only
one attribute in their RHS. A functional dependency of the form X → Y Z could
always be replaced by X → Y and X → Z by using the decomposition rule [23]
which is defined as follows: if F ` X → YZ, then F ` X → Y and F ` X → Z.

4 Motivating Scenario

We consider a healthcare scenario inspired by one of our previous works while
developing an Electronic Health Record (EHR) in Italy [4]. The EHR represents
the mediator which provides mechanisms to share data and to enforce the ap-
propriate authorizations [21]. From that scenario we extract an example that
describes how FDs can impact access control and can be challenging to tackle
at the mediator level.

Global as View Integration. We consider a data integration scenario
where a Global As View (GAV) [22] approach is used to define a mediator
over three sources. Particularly, we consider the sources S1, S2 and S3 with the
following local schemas: S1(SSN,Diagnosis,Doctor) contains the patient so-
cial security number (SSN) together with the diagnosis and the doctor in charge
of her/him, S2(SSN,AdmissionT ) provides the patient admission timestamp,
S3(SSN, Service) provides the service to which a patient has been assigned.

The mediator virtual relation, according to the GAV integration approach,
is defined by using relations of the sources. We consider a single virtual relation
to simplify the scenario but the same reasoning applies for a mediator’s schema
composed by a set of virtual relations. In our example, the mediator will combine
the data of the sources joined over the SSN attribute as shown by rule (1).

M(SSN,Diagnosis,Doctor,AdmissionT, Service) : −
S1(SSN,Diagnosis,Doctor), S2(SSN,AdmissionT ), S3(SSN, Service).

(1)

Authorization Policies are specified by each source on its local schema
and propagated to the mediator. In our example, we assume two categories
of users: doctors and nurses. For S1, doctors can access SSN and Diagnosis
while nurses can access either SSN or Diagnosis but not their association (i.e.,
simultaneously). The rule (2) expresses this policy in form of a prohibition.



R1(SSN,Diagnosis) : −S1(SSN,Diagnosis), role = nurse. (2)

The other sources allow accessing to their content without restrictions both for
doctors and nurses, therefore there are no more authorization rules to specify.

At the Mediator, authorization rules are propagated by the sources aiming
at preserving their policies. The propagation can lead to policy inconsistencies
and conflicts [14]. These issues are out of the scope of this paper. In our example
there is only one rule defined by S1 to be propagated at the mediator.

We then assume that at the mediator the following FDs are identified, either
manually during the schema definition or by analyzing the data with algorithms
such as TANE[20]:

(AdmissionT, Service)→ SSN (F1)
(AdmissionT,Doctor)→ Diagnosis (F2)

F1 holds because at each service there is only one patient that is admitted
at a given time AdmissionT . Note that AdmissionT represents the admission
timestamp including hours, minutes and seconds. F2 holds because at a given
timestamp, a doctor could make only one diagnosis.

Let see how FD could be used by a malicious user to violate the rule (2). Let
us assume the following queries are issued by a nurse: Q1(SSN,AdmissionT,
Service) and then Q2(Diagnosis,AdmissionT, Service). Combining the results
of the two queries and using the functional dependency F1, the nurse can obtain
SSN and Diagnosis simultaneously, which induces the violation of the autho-
rization rule (2). To do so, the nurse could proceed as follows: (a) join the result
of Q1 with those of Q2 on the attributes AdmissionT and Service; (b) take
advantage of F1 to obtain the association between SSN and Diagnosis.

From now on, we refer to a query set like {Q1, Q2} as a violating transaction.
Indeed, both F1 and F2 do not hold in any source. They both use attributes
provided by different sources. Thus, the semantic constraints expressed by these
functional dependencies could not be considered by any source while defining
its policy. This example highlights the limitation of the näıve propagation of
the policies of the sources to the mediator. In the next section, we propose an
intuitive approach for solving this problem.

5 Approach

We propose a methodology that aims at detecting all the possible violations that
could occur at the mediator level by first identifying all the violating transactions
and then disallowing completion of such violating transactions.

Our approach relies on the following settings: we consider the relational model
as the reference model, both user queries and datalog expressions denoting au-
thorization rules (see Section 3) are conjunctive queries and the mediator is
defined following the GAV (Global As a View) data integration approach. This
means that each virtual relation of the mediator is defined using a conjunctive
query over some relations of the sources.
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Fig. 1. The proposed methodology to identify violating transactions and define addi-
tional rules.

Currently we do not consider other types of inferences or background, exter-
nal or adversarial knowledge that refer to the additional knowledge the user may
have while querying a source of information [24, 10]. These aspects are important
but they are out of the scope of this paper.

The proposed methodology, as shown in Figure 1, consists of a sequence
of phases and steps involving appropriate algorithms. It takes as input a set of
functional dependencies (FD), the policy (P) and the schema (S) of the mediator
and applies the following phases:

1. Detection phase: aims at identifying all the violations that could occur
using FD. Each of the resulting transactions represents a potential violation.
Indeed, as shown previously, the combination of all the queries of a single
transaction induces an authorization violation. This phase is performed by
the following steps:
– Construction of a transition graph (G): this is done for each authorization

rule by using the set of provided functional dependencies (FD).
– Identification of the set of Minimal5Violating Transactions (VT ): it con-

sists in identifying all the different paths between nodes in G to generate
the set of minimal violating transactions.

2. Reconfiguration phase: it proposes an approach to forbid the completion
of each transaction in VT identified in the previous phase. By completion of
a transaction we mean issuing and evaluating all the queries of that trans-
action. A rule is violated only if the entire transaction is completed. This
phase modifies/repairs the authorization policy in such a way that no VT
could be completed.

6 Detection phase

In the detection phase we enumerate all the violating transactions that could
occur considering the authorization rules as queries that need to be forbidden.
The idea is to find all the transactions (i.e., a set of queries) that could match
the query corresponding to the authorization rule.

5 The concept of minimality is detailed in Section 6.2.
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6.1 Building the Transition Graph

The aim of the transition graph is to list all the queries that could be derived
from an authorization rule using functional dependencies. For each authorization
rule we use FD to derive a transition graph (G) as shown in Figure 2. To build
G we resort to Algorithm 1 as follows:

1. Consider the set of attributes of an authorization rule as the initial node.
2. For each FD in FD that has the RHS attribute inside the current node

(starting from the root):

(a) Create a new node by replacing the RHS attribute of the node with the
set of attributes of the LHS of FD.

(b) Create an edge between the two nodes and label it with FQ (see Defini-
tion 6) corresponding to the FD that has been used.

3. Apply the same process for the new node.

6.2 Identifying Violating Transactions

The set of minimal violating transactions (VT ) is constructed as follows. First
a path between the initial node (the node representing the authorization rule)
and every other node is considered. As shown in Figure 2, from this path a
transaction (i.e., a set of queries) is constructed. Each query that is used as a
label on this path is added to the transaction. Finally, the query of the final
node of the path is also added to the transaction. This is done for all nodes and
paths in G. Before showing how minimality of the VT is ensured let us introduce
the following definitions.

Definition 6 (Building a query from a functional dependency). Let F
be a functional dependency. We define FQ as the query that projects on all the
attributes that appear in F , either in the RHS or in the LHS. For example, let
R(A1, A2, A3, A4) be a relation and let F be the functional dependency A1, A2 →
A3 that holds on R. In this case FQ is the query that projects on all the attributes
that appear in F . FQ is the query FQ(A1, A2, A3):−R(A1, A2, A3, A4).



Algorithm 1: BuildTransitionGraph (BuildG)

input : ri the rule ri ∈ P ,
FD the set of functional dependencies.

output: G(V,E) the transition graph

1 V := {v(ri)}; // create the root v with the attributes of ri
2 W := {v(ri)}; // add v also to a set W of vertexes to visit

3 foreach w ∈W do
4 W := W − {w};
5 foreach FD(LHS → RHS) ∈ FD do
6 if RHS ∈ w then // RHS is one attribute

7 x := w − {RHS}+ LHS; // create new vertex

8 if x /∈ V then
9 V := V + {x};

10 W := W + {x};
11 e := (w, x, LHS + {RHS}); // e is a new edge from w to x

with as transition the attributes LHS + {RHS}
12 if e /∈ E then // if not already in E add it

13 E := E + {e};

14 return G(V,E) ;

Definition 7 (Minimal Query). A query Q is minimal if all its attributes
are relevant, that is ∀Q′ ⊂ Q : Q′ cannot be used instead of Q in a violating
transaction.

Definition 8 (Minimal Violating Transaction). A violating transaction T
(see Section 3) is minimal if: (a) all its queries are minimal, and (b) all its
queries are relevant i.e. ∀Q ∈ T : T r {Q} is not a violating transaction.

To generate the minimal set of transactions (VT ) that is compliant with the
definition 8, we use the recursive Algorithm 2. The initial call to the algorithm
is: VT := FindV T (G, root, ∅, ∅)

The example in Figure 2 contains three nodes Q1, Q2 and Q3 in addition to
the initial node R1. If we apply Algorithm 2, it will generate, for each node Qi, a
transaction containing each FQ on the path between R1 and Qi, and Qi itself. For
example, to generate T3 that represents the path between R1 and Q3, we start by
adding each Fi on the path from R1 to Q3. Here, F1 and F2 are translated into FQ

1

and FQ
2 respectively. Finally, we add Q3. Thus, we obtain T3 = {FQ

1 , FQ
2 , Q3}.

In the example the returned VT is: VT = {T1 = {Q1, F
Q
1 }, T2 = {Q2, F

Q
2 }, T3 =

{Q3, F
Q
1 , FQ

2 }}. At this stage we emphasized the fact that FD could be combined
with authorized queries to obtain sensitive information. In our example, this
issue is illustrated by the fact that if all the queries of any transaction Ti are
issued then the authorization rule R1(SSN,Diagnosis) is violated. To cope with
this problem and prohibit transaction completion, we propose an approach that



Algorithm 2: FindViolatingTransactions (FindVT)

input : G(V,E) the transition graph, v current vertex, ct current path, VT
current set of transactions.

output: VT the set of minimal violating transactions.

1 foreach e ∈ outgoing edges of v do
2 t := ct + e.transition + e.to ;

// e.transition is the set of attributes of the transition

while e.to is the destination node

3 if @k ∈ V T | k ⊆ t then //if t is minimal with respect to ∀k ∈ VT
4 VT := VT + {t} ;
5 foreach k ∈ VT do
6 if t ⊆ k then // if k is not minimal with respect to t
7 VT := VT − {k} ;

// reducing further V T

8 return FindV T (G, e.to, ct + e.transition,VT );
// recursive call with the v reached by e (e.to) by adding the

e.transition to the current V T

repairs the set of authorization rules with additional rules in such a way that no
violation could occur.

7 Reconfiguration phase

This phase aims at preventing a user from issuing all the queries of a violating
transaction. If a user could not complete the execution of all the queries of any
violating transaction then no violation could occur.

The reconfiguration phase revises the policy by adding new rules such that
no violating transaction could be completed. A näıve approach could be to deny
one query for each transaction. Although this näıve solution is safe from an
access control point of view, it is not desired from an availability point of view.
To achieve a trade off between authorization enforcement and availability, we
investigate the problem of finding the minimal set of queries that denies at
least one query for each violating transaction. We refer to this problem as query
cancellation problem. We first formalize and characterize the complexity of the
query cancellation problem for one rule. Then, we discuss the case of a policy
(i.e., a set of rules).

7.1 Problem formalization

Let VT = {T1, . . . , Tn} be a set of minimal violating transactions and let Q =
{Q1, . . . , Qm} be a set of queries such that ∀i ∈ {1, . . . , n} : Ti ∈ P(Q) r ∅. We
define the following Query Cancellation (QC) recognition (decision) problem as
follows:



– Instance: a set VT , a set Q and a positive integer k.
– Question: is there a subset Q ⊆ Q with |Q| ≤ k such that ∀i ∈ {1, . . . , n} :

Ti rQ 6= Ti ? Here, |Q| denotes the cardinality of Q.

Algorithm 3: QueryCancellation

input : VT is the set of minimal violating transactions.
Q is the set of all the queries that appear in VT

output: S is the set of all solutions

1 foreach q ∈ Q do
2 if ∀t ∈ VT , t ∩ q 6= ∅ then
3 S := S ∪ q ;

4 return S ;

Thus, the optimization problem, which consists in finding the minimum num-
ber of queries to be cancelled is called Minimum Query Cancellation (MQC).

7.2 Problem complexity

In this section, we show the NP-completeness of QC. We propose a reduc-
tion from the domination problem in split graphs [8]. In an undirected graph
G = (V,E), where V is the node (vertex) set and E is the edge set, each node
dominates all nodes joined to it by an edge (neighbors). Let D ⊆ V be a subset
of nodes. D is a dominating set of G if D dominates all nodes of V r D. The
usual Dominating Set (DS)[8] decision problem is stated as follows:

– Instance: a graph G and a positive integer k.
– Question: does G admits a dominating set of size at most k ?

This problem has been proven to be NP-complete even for split graphs [8].
Recall that a split graph is a graph whose set of nodes is partitioned into a clique
C and an independent set I. In other words, all nodes of C are joined by an edge
and there is no edge between nodes of I. Edges between nodes of C and nodes
of I could be arbitrary.

Theorem 1. QC is NP-complete.

Proof. QC belongs to NP since checking if the deletion of a subset of queries
affects all transactions could be performed in polynomial time. Let G be a split
graph such that C is the set of nodes forming the clique and I is the set of nodes
forming the independent set. We construct an instance QC of query cancellation
problem from G as follows: Q = C, VT = I and each transaction Ti is the set
of queries that are joined to it by an edge in G. We then prove that G admits
a dominating set of size at most k if and only if QC admits a subset Q ⊆ Q of
size at most k such that ∀i ∈ {1, . . . , n} : Ti rQ 6= Ti.



Assume QC admits a subset Q ⊆ Q of size at most k such that ∀i ∈
{1, . . . , n} : Ti r Q 6= Ti. Q is also a dominating set of G. In fact, all nodes
of I are dominated since all the transactions are affected by Q and all remaining
nodes in the clique C are also dominated since they all are connected with nodes
of Q. Assume G admits a dominating set D of size at most k. Observe that D
could be transformed into a dominating set D′ of same size and having all its
nodes in C. To ensure this transformation it is sufficient to replace all nodes
of D that are in I by any of their neighbors in C. Note that the obtained set
D′ is also a dominating set of G. The subset of queries to be canceled is then
computed by setting Q to D′.

Thus, we can deduce the following:

Corollary 1. MQC is NP-hard.

To generate the set of queries that need to be canceled we use Algorithm 3.
It returns all the (candidate) sets of queries that have a non-empty intersection
with each violating transaction. We can use different metrics to determine which
set to choose. The first metric is the cardinality of the smallest set. Other metrics
could be defined by the administrator. Indeed, some queries can be identified as
more relevant to the application. In this case, the set of queries to be chosen
could be the one that does not contain any relevant query. The minimal set of
queries MQ is defined using one of the previous metrics. For each query Q in
MQ a new authorization rule is added to prevent from the evaluation of Q.

In our example, the QC algorithm will return three different candidate sets
of solutions to be added to P. These sets are: {r(Q1), r(FQ

2 )}, {r(Q2), r(FQ
1 )},

{r(FQ
1 ), r(FQ

2 )}. If we choose the first candidate set then we will have P =
{R1(SSN,Diagnosis), R2(AdmT, Service,Diag.), R3(AdmT,Doctor,Diag.)}.

Algorithm 4: GenerelizationForPolicy

input : P the set of authorization rules.
output: P augmented with new rules.

1 foreach ri ∈ P do
2 G := BuildG(ri);
3 VT := FindV T (G, root, ∅, ∅);
4 S := QueryCancellation(VT , Q); // Q is obtained listing VT
5 NR := ∅; // NR is the set of new rules

6 foreach q ∈ S do
7 NR := NR ∪ {r(q)}; // Generate a new authorization rule r

from q

8 if NR is not empty then
9 NR := GenerelizationForPolicy(NR);

10 P := P ∪NR;
11 return P ;



7.3 Generalization for a policy

Algorithm 4 deals with query cancellation for the whole policy. We denote by
P the policy (i.e., the set of rules). We denote by NR the set of new rules that
has been generated. The new policy set (P) will be the union of P and NR

(P = P∪NR). A new rule could generate other new rules and so on until no rule
is added. Let NS be the set of attributes of the mediator schema. Since NS is
finite then the maximum number Nr of rules that could be defined is also finite.
Let NP be the number of rules in P. Let n be the difference between Nr and
NP . At each recursive call of the algorithm either no rule has been generated or
n decreases since Nr increases. Thus, the algorithm terminates.

8 Experiments

We have conducted a number of experiments on real and synthetic datasets
to validate each of the steps of our methodology. With synthetic datasets we
generated particular configurations (e.g. worst-case scenarios) while with the
real datasets (downloaded from the UCI ML Repository [6]) we first extracted
FD by using a well-known algorithm called TANE [20] and then we run our
algorithms with sets of rules having different number of attributes (from 2 to
10). We also tested the algorithms on specific subsets of FD (i.e., 100 and 200
extracted from the Bank dataset) that were not present in real datasets (Sub 1
and 2 in Table 1). The source code of the algorithms is released under GPL v3
free software licence and is available at the following address [18].

Table 1. Features data sets together with results of the experiments

Dataset desc. Identified FD Performed experiments and results

Name |S| |FD| FDl |G(V)| |G(E)| BuildG |VT | FindV T |P ′|

Yeast 8 10 3.88 6 10 5 5 4 7
Chess 20 22 9.14 21 20 3 20 14 21
Breast W. 11 37 4.13 41 165 26 37 65 20
Abalone 8 44 3.79 87 835 60 17 42 23
Sub 1 17 100 4.41 217 1312 193 130 197 54
Sub 2 17 200 4.92 453 8152 1502 1737 16596 263
Bank 17 433 6.47 14788 879241 3826 9137 335607 513

The reports about measures performed on each dataset shown in Table 1 are
as follows:

1. Detection phase: FDl is the average number of attributes that appear in
FD, |G(V)| is the number of nodes and |G(E)| is the number of edges of the
generated graph, BuildG is the time in ms to build G, |VT | is the number
of generated VT and FindV T is the time in ms to construct VT .

2. Reconfiguration phase: |P ′| is the number of rules that need to be added
to the policy in order to forbid the completion of any transaction in VT .



For each of the tests reported in Table 1 we calculated the mean value for
100 different executions generating rules with a number of attributes ranging
from 2 to 10.
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While Table 1 reports on the approach practicability on real datasets, the
graphs in Figures 3, 4, 5 and 6 show tests performed on synthetic datasets. Also
in this case we run multiple tests while varying parameters that are not subject
to the evaluation. In particular, Figure 3 shows the relation between the number
of nodes and the cardinality of randomly generated FD. We report different tests
while varying the number of attributes at the mediator schema. The tests show
that by increasing the cardinality of FD, the number of nodes increases very
fast until, at a certain point, it starts slowing and approaching its upper bound
as expected theoretically. Figure 4 shows the relation between the number of
nodes and the time needed for building G with fixed attributes in the mediator
schema. As we can see, the time to build G increases proportionally with respect
to the number of nodes. This is mainly because we use binary trees to manage
the nodes. The dots in figures represent single executions while the line has been
generated using the Spline algorithm [19]. Figure 5 reports the performances
on identifying VT from previously built graphs. The time grows proportionally



with respect to the number of transactions. With the discovered VT we extract
the additional rules by applying Algorithm 4 to forbid transaction completion.
Figure 6 shows the relation between the number of transactions and the number
of additional rules that are extracted. In particular, at each cycle, we pick as
decision metric the new rule that appear more often in VT . We observe that the
more FDs are discovered the more rules need to be added. This is due to the
fact that more FDs induce more alternatives to policy violations.

The experiments show the practicability of our methodology on different
datasets with different characteristics. The approach showed some limitation
only when the cardinality of FD becomes very large (e.g., greater than 1500 for
a single relation) being not able to discover transactions in an acceptable amount
of time. We believe that this amount of FDs does not represent a typical scenario.
Nevertheless, we will further investigate such situations.

9 Conclusions

In this work we have investigated the problem of illicit inferences that result
from combining semantic constraints with authorized information showing that
these inferences could lead to policy violations. To deal with this issue, we pro-
posed an approach to detect the possible violating transactions. Each violating
transaction expresses one way to violate an authorization rule. Once the violat-
ing transactions are identified, we proposed an approach to repair the policy.
This approach aims at adding a minimal set of rules to the policy such that no
transaction could be completed.

As future work we are extending this approach to partial FDs (i.e., the FDs
that are not satisfied by all tuples but can lead to policy violations). We also plan
to investigate other kinds of semantic constraints such as inclusion dependen-
cies and multivalued dependencies. Finally, we could consider other integration
approaches such as LAV and GLAV where same issues can arise.
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