
“Tell me more" using Ladders in Wikipedia
Siarhei Bykau
Bloomberg L.P.

sbykau@bloomberg.net

Jihwan Lee
Purdue University

jihwan@purdue.edu

Divesh Srivastava
AT&T Labs-Research

divesh@research.att.com

Yannis Velegrakis
University of Trento

velgias@disi.unitn.eu

ABSTRACT
We focus on the problem of “tell me more” information related to
a given fact in Wikipedia. We use the novel notion of role to link
information in an infobox with different places in the text of the
same Wikipedia page (space) as well as information across different
revisions of the page (time). In this way, it is possible to link together
pieces of information that may not represent the same real world
entity, yet have served in the same role. To achieve this, we introduce
a novel structure called ladder that allows such spatial and temporal
linking and we show how to effectively and efficiently construct
such structures from Wikipedia data.

ACM Reference format:
Siarhei Bykau, Jihwan Lee, Divesh Srivastava, and Yannis Velegrakis. 2017.
“Tell me more" using Ladders in Wikipedia. In Proceedings of WebDB’17,
Chicago, IL, USA, May 14, 2017, 6 pages.
DOI: http://dx.doi.org/10.1145/3068839.3068847

1 INTRODUCTION
Knowledge bases are repositories encoding knowledge in structured
form, so that they can be better organized, managed, and queried
using traditional database languages. Most knowledge bases nowa-
days technology generated from manually curated datasets. A classi-
cal example is DBpedia1 which is generated from Wikipedia data.
Wikipedia2 is one of the largest collections of knowledge and prob-
ably one of the most valuable publicly accessible resources of our
time.

Despite the fact that the DBpedia content is structured, enabling
it to be easily exploited by machines, it is still used mainly by
humans to explore structured Wikipedia data. Users who know some
interesting piece of information and would like to learn additional
facts related to it find DBpedia to be an ideal resource. They may not
always know exactly what else they would like to learn, but they can
browse the structured data connected to the fact they already know,
and decide which of these structured data are of interest to them.

Most knowledge bases, including DBpedia, that extract knowl-
edge from Wikipedia focus on its structured part. Each Wikipedia
page has information about some real-world entity or concept and
consists of some free text and some structured part (known as the

1https://wiki.dbpedia.org
2https://www.wikipedia.org

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WebDB’17, Chicago, IL, USA
© 2017 ACM. 978-1-4503-4983-3/17/05. . . $15.00
DOI: http://dx.doi.org/10.1145/3068839.3068847

Infobox). The Infobox is composed of a sequence of attribute name-
value pairs, each describing some property of the entity that the
page is about. The value of an attribute is often some other entity,
and the attribute name describes the role that entity plays for the
entity of the page. This structured information is used to gener-
ate the knowledge base. Consider, for instance, the Wikipedia page
about the Cleveland Browns3, a professional American football team
based in Cleveland, Ohio. In its Infobox, one can find an attribute
with name home field whose value is the entity FirstEnergy
Stadium, the owner whose value is the entity Jimmy Haslam,
the president whose value is the entity Alec Scheiner, the
head coach whose value is the entity Mike Pettine, and so
on. A knowledge base could, for instance, model these facts as RDF
triples connecting the resource Cleveland Browns with each
one of the aforementioned entities and a property named after the
corresponding attribute name.

In this work, we deal with the problem of exploiting Wikipedia
in order to find related information about a specific given fact (i.e.,
a “tell me more” service). We observe that in addition to the related
information obtained from structured data as recorded in knowl-
edge bases, there is a lot of additional related information that can be
found only in the textual part, e.g. for the current head coach of Cleve-
land Browns this information includes when Mike Pettine was
hired, what was his previous appointment, how many head coaches
preceded him and so on. To help in locating such information in
the text, we aim at recognizing those parts of the text that contain a
specific given fact. Once we have identified all these appearances,
we retrieve the textual information related to them. Of course the
concept of “related” is broad and may be subject to many differ-
ent interpretations. Furthermore, since we deal with text data, the
associations between different pieces of information that appear in
the text may be vague and of differing interest to different users.
Nevertheless, since the target audience of a “tell me more" service is
a real end user interested in exploratory search, once we identify an
appearance of the given fact in the text, we can return as the related
information the text that surrounds it.

We assume that the fact that we have at hand, i.e., the one for
which we want to find related information, is already recorded in the
Infobox of a Wikipedia page as an attribute name-value pair. Thus,
such information can be fully specified by a triple 〈s,p,o〉, where s
is the entity that the Wikipedia page is about, p is the name of the
attribute, and o is the value of the attribute. The challenging problem
then is to identify the parts of the text of a page that contain this
information and retrieve its surrounding text. To do so, one needs to
effectively deal with two dimensions: the heterogeneity within the
page and the heterogeneity across revisions of the page.

The first dimension is the spatial dimension and aims at identify-
ing appearances of the given Infobox entry throughout the Wikipedia

3https://en.wikipedia.org/wiki/Cleveland_Browns

https://en.wikipedia.org/wiki/Cleveland_Browns

WebDB’17, May 14, 2017, Chicago, IL, USA Siarhei Bykau, Jihwan Lee, Divesh Srivastava, and Yannis Velegrakis

document of an entity s. Consider a given Infobox entry 〈p,o〉 which
indicates the fact that attribute value o is related to the entity s under
a role p. The entity o may appear multiple times in the text of the
page s, but not all these appearances play the role p. Consider, for
instance, the case of Mike Pettine who has the role of head
coach (as the corresponding entry in the Infobox indicates). As a
first step, one can look at the appearances of Mike Pettine in the
text. However, not all the sentences mentioning Pettine are relevant
to this role. The sentence “On January 24, 2014, the Browns hired
Mike Pettine as the 15th full-time head coach in team history
(and seventh since the team’s return in 1999)” is clearly relevant.
On the other hand, the sentence “Previously Mike Pettine was
a defensive coordinator for the NY Jets, then Buffalo”, refers to Pet-
tine’s role as defensive coordinator for different sports teams before
becoming the coach. To identify Pettine’s role in these sentences,
one needs to analyze the text surrounding mentions of Pettine in
the text to discover his role there. We refer to this type of linking
between some information mentioned in the Infobox, and the same
information in the text as spatial linkage.

The second dimension is the temporal in which we identify the
portions of previous and subsequent Wikipedia page revisions of the
document, that describe the same kind of information as identified
through spatial linkage. The value of the property head coach in
the Infobox was Rob Chudzinski, and in a subsequent revision it
was changed to Mike Pettine, indicating that Pettine assumed
the role of head coach replacing Chudzinski. However, once the
value of the head coach was updated, no link was maintained to
indicate that Pettine succeeded Chudzinski in the role of head coach.
Considering the text, in one revision of the Cleveland Browns page
there is a sentence Rob Chudzinski is serving as the head coach,
which is eliminated in some subsequent revision and a new one is
added that reads: “On January 24, 2014, the Browns hired Mike
Pettine as the 15th full-time head coach in team history (and
seventh since the team’s return in 1999).” These two sentences
indicate the evolution of the head coach role in the team and they can
be used to provide a temporal linkage from Chudzinski to Pettine.

As it has probably become clear, spatial and temporal linkages are
not based on the entities alone, as in most linkage mechanisms, but
also on the role the entities are used for. We refer to this novel notion
of linkage as role linkage to distinguish it from entity linkage [3, 6].
For role linkage we see every piece of data as consisting of two parts:
the actual value and the role. In the case of the Infobox, the role is
the attribute name. In the case of the textual part, we analyze the
surrounding text to identify the role. To realize the concept of role
linkage, we introduce a new data structure called ladder. Similar to
real-life ladders, our ladder consists of rungs and rails. The rungs
span between infobox entries and parts of the text, indicating the
spatial links. The rails of the ladder span across different temporal
revisions, indicating the temporal links.

The specific contributions of our paper are as follows. 1. We
develop a new method for answering “tell me more” queries in the
DBpedia/Wikipedia context. 2. We introduce and formally define the
problem of role linkage, which aims at finding and linking references
in the structured (Infobox) part and the unstructured (text) part
that are used under the same role. 3. We introduce a novel data
structure called ladder which spans across time (revisions) and

space (structured and unstructured parts) connecting references to
real world entities that are used under the same role. 4. We design
and implement an algorithm for efficient ladder extraction from the
revision history of a Wikipedia page based on supervised learning
and we apply it to role linkage. 5. Using four Wikipedia-based
datasets as well as crowd-sourced ground truth labels, we report
the effectiveness and efficiency of the ladder method in addressing
the challenges of role linkage. The experimental results show that
the use of ladders leads to a significant gain in precision without
sacrificing recall.

2 PROBLEM STATEMENT
We assume a countable set of namesN , entities E and atomic values
S. An attribute is a pair 〈p,o〉 where p∈N and o∈E. The p and o
are referred to as the attribute name and value, respectively. The
set A=N×E is the set of all possible attributes. A text is a finite
sequence of entities and atomic values. Let T be the set of all
possible such sequences. We will denote as txt[i] the i-th element of
a text txt , and as pos (w) the position i of an element w in a text, i.e.,
txt[i] = w if and only if pos (w)=i. We also define the link of a text
txt , and denote it as txt l ink , to be the sequence of all the entities in
the txt in the order they appear in txt . Each entity in a text has its
own neighborhood which is the sequence of entities or values that
surround it. A neighborhood has a radius that determines how many
entities or values before or after to consider as neighborhood.

A page is a tuple 〈e, In f , txt〉 where e∈E, referred to as the page
entity, In f ⊂A, referred to as the infobox (or the structured part)
of the page, and txt∈T , referred to as the text (or the unstructured
part). We consider the information provided in the infoboxes of
the Wikipedia pages as facts. Formally, a fact is a triple 〈s,p,o〉 for
which there is a page 〈s, In f , txt〉, with 〈p,o〉∈In f .

Pages evolve in time through modifications in their text and/or
their infobox. With every modification, a new revision of the page
is created. The sequence of revisions that a page has gone through
in time constitutes its history ({ri }). By definition, all the revisions
have the same page entity. Furthermore, at any given point in time,
there can be no more than one page with the same page entity.

Entities in the infobox or in the text of pages indicate some form
of relationship between them and the page entity. We refer to this
form of relationship as role, since it specifies the reason for the
entity’s appearance in the page. For an entity appearing as a value
in an attribute in the infobox of a page, the role is the pair of the
page entity s and the attribute name p, and in what follows, it will be
denoted as s .p.

In a “tell me more” service, it is important to identify in the text
of the current and the previous revisions of a Wikipedia page all
these occurrences of entities that are used under the same role as the
role of an entity that is provided in the argument. In other words,
given a fact 〈s,p,o〉, we need to identify every entity o′ in the text
part of the Wikipedia page of the entity s, that appear under the role
s .p, i.e., the same role as the entity o. We refer to this problem as
role linkage.

To model the linked entities based on the role, we introduce a
special structure we call ladder. A rung is a pair that links an entity
of a given role in the infobox of a page with the entity in the text with
the same role. A sequence of entities in a sequence of revisions of a

“Tell me more" using Ladders in Wikipedia WebDB’17, May 14, 2017, Chicago, IL, USA

page, all of the same role but with each one in a different revision,
form a text rail. Similarly, infobox entities in different revisions of
the Wikipedia page but of the same role, are connected together
through a structure called an infobox rail. Since there can be many
entities of the same role in the text of a page, there are many ways
they can be combined across different revisions; thus, there are many
different text rails that can be created. Finding the right way to
combine them to form the right text rails is the challenge we solve
in the next section. The infobox rail, the text rail and the rungs that
have their endpoints in these two respective rails, all of a same role,
form a ladder structure for that role. More formally:

DEFINITION 2.1. Given a Wikipedia page and role r , a ladder for
r is the tuple 〈IRr ,TRr ,Rnдr 〉 where IRr , and TRr are the infobox
and text rails, respectively, of r , and Rnд is a set of rungs 〈b, e〉, for
which b∈IRr and e∈TRr .

In the Wikipedia page of Cleveland Browns the infobox rail
IRhead coach consists of the entities Romeo Crennel, Eric
Mangini, Pat Shurmur, Rob Chudzinski, and Mike
Pettine, that have all served as head coaches, i.e., that have ap-
peared as head coaches in different revisions. The abstract section of
the text mentions the entity Mike Pettine. Looking at previous
revisions of the page one can observe that in the specific sentence,
the names Pat Shurmur and Rob Chudzinski appear instead,
indicating the name of the head coach. These names together also
form a text rail. The name Mike Pettine appears also in a later
section of the page. In that section but in previous (different) revi-
sions the names of Pat Shurmur and Rob Chudzinski were
mentioned. The latter two with this second appearance of Pettine
form another text rail. Each of the two text rails couples with the
infobox rail, and together with rungs that connect the entities in the
text and in the infobox rail in the same revision form a ladder. Thus,
in the specific example, two different ladders will be created, each
for the role Cleveland Browns.headcoach

3 LADDER EXTRACTION
To extract the ladders we exploit the fact that, in Wikipedia, syn-
chronized changes, i.e., changes in both the infobox and the text, are
the norm rather than the exception. By noticing such changes we
are able to identify linkages between entities in the infobox and the
text. We have identified two patterns of synchronized changes that
typically take place: the evolution pattern is the case in which an
update of an entity in the structured part is accompanied by the same
change in the unstructured part, and the adjacency pattern is the case
when the structured part is updated whereas the unstructured part
appends a new value.

3.1 Infobox and Text Rail Extraction
To extract Infobox rails, for a given role s .p we need to collect all
the entities that appear as values in the attribute p in any revision of
the Wikipedia page of the entity s.

Next, we extract the various text rails for the different roles. Usu-
ally, each entity in a role persists for some time, i.e., is replicated in
a number of consecutive revisions. For example, the history section
of Cleveland Browns contains Pat Shurmur as a head coach for
almost 2 years. To extract such a long rail we take advantage of the
following observation: if we replay the edit history of a page entity

Algorithm 1: Rail Extraction Algorithm

Input: s .p
Output: I Rp , {TRp }, Rnд
(1) r es ← ∅
(2) visited ← ∅
(3) Rnд ← GETRUNGS(s, p)
(4) foreach runд ∈ Rnд
(5) if runд < visited
(6) head ← runд
(7) TRp ← {head }
(8) while head , null
(9) candidates ← ∅
(10) for i = ver (head) + 1 to ver (head) + nahead
(11) foreach j ∈[pos (head)−r,pos (head)+r]
(12) candidates ← candidates ∪ txt l inki [j]
(13) f eatures ← GETFEATURES(candidates)
(14) head ← DECISIONTREECLF(f eatures)
(15) TRp ← TRp ∪ head
(16) visited ← visited ∪ head
(17) r es ← r es ∪TRp
(18) I Rp ← GETINFOBOXRAIL(s, p)
(19) r eturn IRp, r es, Rnд

we notice that its revisions do not change dramatically from one
revision to another, but only small gradual changes take place. Thus,
we start with an initial revision and gradually try to extend our rail
towards the future revisions of the page.

Algorithm 1 presents the extraction process of a set of {TRp }
as well as IRp and a set of rungs Rnд for the given role s .p using
decision trees. We start by initializing the set of all text rails, res,
to an empty set (line 1). We keep track of the entities which we
processed with the help of visited which we initialize to an empty
set (line 2). We obtain an initial set of entities which potentially
can belong to the role s .p by calling GETRUNGS(s,p) in (line 3).
GETRUNGS(s,p) returns all entities in some revision of s which are
the values of the given attribute s .p in the attributes of s, i.e., o ∈
GETRUNGS(s,p) if ∃〈s, In f , txt〉, where 〈p,o〉∈In fi and e∈txt l inki .

For each unvisited runд (lines (4-5)) we build a text rail which
starts with that runд. We sethead of the rail to runд in line (6) and we
initiate a new text railTRp in line (7). Then we grow the rail until we
find that it is broken. More specifically, we construct a list of possible
candidate entities to which the rail can potentially grow (lines (9-12)).
Each candidate entity may come from one of the nahead successive
revisions and can have the position within r entities of the original
entity position. Note, the function ver () returns the revision id of
an entity. In line (13) we call the function GETFEATURES() which
extracts features associated with every candidate (see Table 1 for the
details) and then we apply a decision tree classifier to find the most
probable candidate. If that candidate is below a given threshold then
DECISIONTREECLF() returns null . The most probable candidate
becomes a new head of the rail (line (14)). We mark it to the current
text rail TRp in line (15) and mark it as visited in line (16). Once a
rail is broken (i.e., its head is null) we add it to res (line (17)). We
repeat the same routine until all runдs are processed. At the end of
the algorithm, res contains a set of text subrails which belong to
the given role s .p. Finally, in line (18) we extract the corresponding
infobox rail by calling GETINFOBOXRAIL(s,p) which uses s .p as
the role identifier. We return IRp , res and Rnд in line (19).

Algorithm 1 and the entity features described in Table 1 are flexi-
ble enough to handle various types of errors and edits across page

WebDB’17, May 14, 2017, Chicago, IL, USA Siarhei Bykau, Jihwan Lee, Divesh Srivastava, and Yannis Velegrakis

type name description

bool same is a substitution
num jaccard jaccard distance between neighborhoods
num pos_diff position change
num rev_diff distance between revisions
bool flink_tngb head is in candidate’s neighborhood
bool tlink_fngb candidate is in head ’s neighborhood
Table 1: Entity features used for text rail extraction

revisions. (a) Correction edits (clarification edits) occur when the
authors fix some issue in text (e.g., a new fact added). Usually, those
kinds of edits are not massive and our rail extraction handles them
effectively since it tolerates small perturbations of the neighborhood
(the jaccard feature). (b) Synonymous or equivalent edits replace
some entity (or words) with a synonym. Our method detects those
edits as substitutions and learns them with the help of the same fea-
ture. (c) Adversarial edits (or vandalism) are intentionally harmful
updates which can potentially affect the entire page. We handle them
by allowing the rail extraction to skip those revisions by learning
the rev_diff parameter (a reverted revision is likely to have simi-
lar or identical neighborhood). (d) Noisy edits, flink_tngb and
tlink_fngb detect small position changes of head due to noisy
edits. Overall, our rail extraction effectively handles all other kinds
of edits (temporal changes, typos, extension edits, and so on) and is
shown to produce high quality robust rails.

3.2 Adjacency
Another pattern which allows us to discriminate between relevant
and non-relevant text rails is the adjacency pattern.

EXAMPLE 3.1. The history section of Cleveland Browns talks about
the head coaches of Cleveland Browns and enumerates them in the
order they were introduced, i.e., Pat Shurmur, Rob
Chudzinski, Mike Pettine. If we replay the revision history
we will see that first Pat Shurmur appeared in the text, then Rob
Chudzinski was appended as its successor and, finally, Mike
Pettine was added as the current head coach.

In other words, an evolution can unfold either in time, i.e., en-
tities substitute other entities within the same rail but at different
points of time, or in space, i.e., they appear one after another in the
unstructured part of a page entity. In order to capture adjacent rails
we first introduce some needed definitions.

First of all, we need to measure how close two rails are to each
other across multiple revisions. Note that rails may only partially
overlap, i.e., there are revisions where one rail exists and another
does not. Intuitively, rails are closer to each other if they co-existed
for more revisions and the total distance between them is small.
Formally, we define the adjacency distance, adj, of two rails TR′p
and TR′′p as follows.

adj (TR′p ,TR
′′
p) =

|{ri }|ei ,ej ∈txt l inki ei ∈TR′p,ej ∈TR′′p

loд
∑
ri |ei ,ej ∈txt l inki
ei ∈TR′p,ej ∈TR

′′
p

|pos (ei) − pos (ej) |
(1)

adj is the ratio between the number of revisions whereTR′p andTR′′p
co-existed and the logarithm of the cumulative absolute difference

in their positions. We say that two rails TR′p and TR′′p are α -adjacent
if adj (TR′p ,TR

′′
p) = α . The higher the α the closer are the two rails.

The fact that two rails are close to each other does not necessarily
mean that they should be considered adjacent. We notice that the
adjacency implies that (i) there are no repeated entities in the adjacent
rails in the same revision, e.g., it is not possible to have two close rails
which have Pat Shurmur as the value within the same revision;
and (ii) the order of entity introductions should be the same as in the
corresponding infobox rail, e.g., the adjacent text rails should appear
as the Pat Shurmur rail, than the Rob Chudzinski rail, and
finally the Mike Pettine rail. Those properties are known as
the disjoint rung constraint (DRC) and value precedence constraint
(VPC), respectively.

3.3 Ladder Extraction Algorithms
In this section we present two algorithms for ladder extraction,
namely the Ladder Extraction Algorithm and Ladder Wordnet.

Ladder Extraction Algorithm. First, we initialize the text rail set
(which consists of all relevant text rails) to an empty set. Then we
extract all relevant text rails to the given role, its infobox rail and a
set of rungs by calling Algorithm 1. For each pair of text rails we
compute adj distance and use it to cluster text rails into bundles.
For that we use correlation clustering [1] since the distance may not
exist for all pairs of text rails (e.g., for those text rails which don’t
have overlapping revisions). As a result we produce groups of rails
which are adjacent based on the adj distance. As we discussed in
Section 3.2 not all adjacent text rails are relevant to the correspond-
ing infobox rail and therefore we need to make sure that DRC and
VPC are satisfied for each bundle. So we enforce DRC and VPC by
checking if a bundle’s text rails satisfy the corresponding constraint
and if not then the bundle is split back into individual text rails (i.e.,
each split rail become a new bundle). Finally, for each bundle we
check if it contains more than one distinct entity and if so than we
consider that bundle relevant and we add it to the result set. Those
relevant bundles are the output of Ladder Extraction Algorithm.

Ladder Wordnet. Ladders use only the temporal dynamics of en-
tities in the space and time dimensions to do role linkage. We can
further enhance the ladder method by considering semantic aspects
of entities and a given attribute. Since an attribute name describes
what an entity actually talks about, if the attribute name is found in
the neighborhood of the entity, then it gives us a strong signal that
indicates the entity is highly likely to be relevant to the role of the
attribute [5]. Due to the fact that different words may describe the
same concept and different concepts may be interconnected in terms
of semantic and lexical relations, it would not be meaningful to seek
the exact match of the attribute name in the neighborhood of the en-
tity. To capture such semantic binding between an attribute name and
words in the neighborhood of an entity, we leverage Wordnet [14]
by computing the entity relevance score as follows:

S (s .p, e) =
∑

wi ∈nдb (e)

(ρ (wi , e) ∗ τ (wi , s .p))

where ρ (wi ,w j) = e−0.1∗di j and di j is the word distance between
those two words in a sequence of words and τ (wi ,w j) = 1/si j and

“Tell me more" using Ladders in Wikipedia WebDB’17, May 14, 2017, Chicago, IL, USA

dataset1 dataset2 dataset3 dataset4
0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

dataset1 dataset2 dataset3 dataset4
0.0

0.2

0.4

0.6

0.8

1.0

R
e
ca

ll

dataset1 dataset2 dataset3 dataset4
0.0

0.2

0.4

0.6

0.8

1.0

F0
.5

iPopulator wordnet link clustering text clustering link ladder text ladder link ladder+wordnet text ladder+wordnet

Figure 1: Effectiveness of the iPopulator, wordnet, clustering, and ladder methods

dataset n_rev ambiguity n_trans no. of pages
dataset1 low low low 9,241
dataset2 high low low 2,708
dataset3 high low high 597
dataset4 high high high 218

Table 2: Wikipedia datasets

si j is the distance of shortest path betweenwi andw j in the Wordnet
graph.

4 EXPERIMENTS
4.1 Experimental Setup
Datasets. In the experimental evaluation we use the Wikipedia real
world datasets. Initially, we collected 4,113 Wikipedia pages (count-
ing a set of page revisions as one page) and extract 19,511 distinct
page-role pairs from the set of pages. We then partitioned them into
8 subsets according to the following three parameters: n_trans
- the number of transitions within a role, ambiguity - the level
of ambiguity of a role and nrev - the number of revisions of a
page. After discarding subsets that do not contain any pages in the
population of Wikipedia pages, we finally used 4 subsets presented
in Table 2.

Crowdsourced Ground Truth. Answering “tell me more” queries
requires us to correctly identify relevant and non-relevant entities in
the text for a given pair of page and role. We thus collected ground
truth using Amazon Mechanical Turk (AMT)4. Since we have a
large number of input entities for role linkage (e.g., a typical page
consists of thousands of entities) we need to carefully choose which
entities to validate. We first randomly sample pages from each of the
datasets and run all the methods over the sampled pages. Then each
method returns a set of entities that are considered as relevant to a
given pair of page and role. We took the union of all the sets of enti-
ties and extracted entities on which there is at least one disagreement
among all methods. We used AMT to collect ground truth labels
on those entities and provided crowds with the following informa-
tion. The description explains what they are expected to do along
with a page title and timestamp when it was created. The paragraph
is one that actually appears in the Wikipedia page and includes a
highlighted entity to validate. For each of the entities to validate we
ask three crowd members to determine whether it refers to a given
role in the presented paragraph. We build the ground truth for the

4https://www.mturk.com/mturk/

entities based on the majority voting of the collected answers for the
effective analysis in Section 4.

Competitive Methods. We compare the following methods in the
experimental evaluation. iPopulator [10] is a system that auto-
matically populates infoboxes of Wikipedia articles by extracting
attribute values from the article’s text. Although its objective is dif-
ferent from ours, we adopt the idea of iPopulator to determine
whether a given entity is relevant to a certain role which is spec-
ified by an attribute. wordnet leverages entity’s relevance score
which is determined by the distance from the entity to an attribute
name in the text and the similarity between the attribute name and
neighboring words of the entity. link/text clustering is
based on the clustering of input entities based on their link/text
neighborhood (i.e., surrounding entities). We use the jaccard dis-
tance of neighborhoods to measure the similarity between entities
and cluster entities with similar neighborhoods together. Then, each
entity is considered relavant or not based on the number of entities
in its cluster. As an implementation we use DBSCAN [4] because
the algorithm is naturally able to capture the gradually changing
neighborhoods of entities across different revisions. link/text
ladder uses the ladder structure based on the link/text neighbor-
hood. link/text ladder wordnet determines an entity’s
relevance based on disjunction of the results of the link/text
ladder and the wordnet methods. For all the methods, the size
of the link/text neighborhood is 10 on both left and right sides.

4.2 Effectiveness
The goal of this experiment is to see how effectively each of the
considered methods is able to identity which entities are relevant to
a given page and role on the real datasets presented in Section 4.1.
We report the effectiveness using precision, recall and F0.5 on the
ground truth collected from AMT.

In dataset1, all methods perform equally except ladders with
respect to F0.5 and ladders have the precision and recall of 0.
That is explained by the fact that ladder works only for pages
which contain value evolution, i.e., they either capture substitutions
or adjacent rails. However, dataset1 is sampled in a way that it has
pages with few revisions, no ambiguity and no evolution and thus
there cannot exist relevant ladders.

Looking at the text ladder and link ladder, we observe
that they have very high precision but relatively low recall. That sug-
gests that ladders have low false positive rate, i.e., if ladders

https://www.mturk.com/mturk/

WebDB’17, May 14, 2017, Chicago, IL, USA Siarhei Bykau, Jihwan Lee, Divesh Srivastava, and Yannis Velegrakis

0 1,000 2,000 3,000 4,0000

30

60

90

120

150

180

NRng

R
un

ni
ng

tim
e(

se
c)

wordnet

link clustering

text clustering

link ladder

text ladder

link ladder wordnet

text ladder wordnet

Figure 2: Efficiency with varying number of rungs
captured evolution and/or adjacency then it is highly likely that the
entities which belong to that ladder are relevant. From the ladder
wordnet results we observe that the method successfully combines
two different (and complementary) ideas that exhibit a good pre-
cision/recall trade-off which results in high F0.5 scores. The best
results are achieved with the link neighborhood. Regarding the
clustering baseline, we notice that it has a high false positive rate
because it groups together many irrelevant entities. iPopulator
does not show a clear trend of its performance over different datasets.
That is because it does not employ any temporal dynamics or value
evolution of entities in Wikipedia articles and it rather relies on
syntactical features of entities which are not related to any charac-
teristics presented in Table 2. Also, iPopulator falls behind our
ladder based methods in overall performance.
Takeaways. In the presence of evolution, ladders show significant
improvements in role linkage precision and if combined with wordnet
achieve a good trade-off between precision and recall.

4.3 Efficiency
In this section, we study the efficiency of the ladder methods. As
described in Section 4.1, the Wikipedia pages are categorized into
four different sets depending on their statistical characteristics of
n_rev, ambiguity, and n_trans. However, the most impor-
tant factor that affects running times is the size of Rng denoted
by NRng. Note that NRng determines the input size: wordnet and
clustering work on only Rng and ladder performs the rail
extraction algorithm that is initiated with Rng. In order to see the
correlation between NRng and the running time, we partition all the
pages into 10 bins, each of which is associated with one of the inter-
vals that equally divide the range of [min(NRng), max(NRng)].
Then we sample 10 pages from each bin and take the average of
the running times of all the methods for the sampled pages. As
shown in Figure 2, the running times increase as NRng increases.
The running time of wordnet stays almost the same. That is be-
cause the relevance computation in wordnet takes constant time
for each entity and we cache the computed relevance scores for enti-
ties having the same role to leverage the fact that most of the entities
appear repeatedly in the entire revision history. The running time of
ladder grows linearly with NRng and is much more efficient than
clustering that has O (n2) time complexity.
Takeaways. ladder can efficiently find relevant entities for a
given attribute while running in linear time since its running time
mostly depends only on NRng which is usually small. Also, ladder
wordnet does not have an overhead coming from leveraging
wordnet, due to its constantly good efficiency.

5 RELATED WORK
Our work looks similar but is actually different from entity linkage [3,
6], since we do not link entities that represent the same real world
entity, but entities that are used under the same role (role linkage)
in the infobox and the text and across different revisions. Temporal
linkage [2, 11, 12] is somehow closer to us, yet it still identifies
structures representing the same real world entity. In contrast to
works on populating the Wikipedia infobox from data in the text [10,
16], we find which entity occurrences in text are the values of an
infobox attribute that already exists. Information extraction [8, 9,
15, 18] and temporal information extraction [7, 13], specifically, aim
at extracting entities and their relations from text. Our work assumes
that the entities are already recognized, and it comes after that task.

6 CONCLUSION
We studied the problem of using the text of Wikipedia pages to
provide related information to a fact described as an attribute in
the infobox. The related information is the surrounding text in the
appearances of the attribute value in the text but under the same role.
We introduce a new structure called ladder that materializes linking
based on the role of the entities and illustrated how such ladders can
be created efficiently and effectively.

REFERENCES
[1] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Mach. Learn.,

56(1-3):89–113, June 2004.
[2] Y. Chiang, A. Doan, and J. F. Naughton. Modeling entity evolution for temporal

record matching. In SIGMOD, pages 1175–1186, 2014.
[3] D. Dey, S. Sarkar, and P. De. Entity matching in heterogeneous databases: A

distance based decision model. In HICSS, pages 305–313, 1998.
[4] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for

discovering clusters in large spatial databases with noise. pages 226–231. AAAI
Press, 1996.

[5] A. Gliozzo, B. Magnini, and C. Strapparava. Unsupervised domain relevance
estimation for word sense disambiguation. In EMNLP, pages 380–387, July 2004.

[6] M. A. Hernández and S. J. Stolfo. The merge/purge problem for large databases.
In SIGMOD, pages 127–138, 1995.

[7] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum. YAGO2: A spatially and
temporally enhanced knowledge base from wikipedia. Artif. Intell., 194:28–61,
2013.

[8] J. Hoffart, M. A. Yosef, I. Bordino, H. Fürstenau, M. Pinkal, M. Spaniol, B. Taneva,
S. Thater, and G. Weikum. Robust disambiguation of named entities in text. In
EMNLP, pages 782–792, 2011.

[9] S. Kulkarni, A. Singh, G. Ramakrishnan, and S. Chakrabarti. Collective annotation
of wikipedia entities in web text. In KDD, pages 457–466, 2009.

[10] D. Lange, C. Böhm, and F. Naumann. Extracting structured information from
wikipedia articles to populate infoboxes. In CIKM, pages 1661–1664, 2010.

[11] F. Li, M.-L. Lee, W. Hsu, and W.-C. Tan. Linking Temporal Records for Profiling
Entities. In SIGMOD, pages 593–605, 2015.

[12] P. Li, X. Dong, A. Maurino, and D. Srivastava. Linking temporal records. VLDB,
4(11):956–967, 2011.

[13] X. Ling and D. S. Weld. Temporal information extraction. In AAAI, 2010.
[14] G. A. Miller. Wordnet: A lexical database for english. Commun. ACM, 38(11):39–

41, Nov. 1995.
[15] D. Milne and I. H. Witten. Learning to link with wikipedia. In CIKM, pages

509–518, 2008.
[16] A. Sultana, Q. M. Hasan, A. K. Biswas, S. Das, H. Rahman, C. H. Q. Ding, and

C. Li. Infobox suggestion for wikipedia entities. In CIKM, pages 2307–2310,
2012.

[17] G. Weikum, J. Hoffart, and F. M. Suchanek. Ten years of knowledge harvesting:
Lessons and challenges. IEEE Data Eng. Bull., 39(3):41–50, 2016.

[18] M. A. Yosef, J. Hoffart, I. Bordino, M. Spaniol, and G. Weikum. AIDA: an online
tool for accurate disambiguation of named entities in text and tables. PVLDB,
4(12):1450–1453, 2011.

	Abstract
	1 Introduction
	2 Problem Statement
	3 Ladder Extraction
	3.1 Infobox and Text Rail Extraction
	3.2 Adjacency
	3.3 Ladder Extraction Algorithms

	4 Experiments
	4.1 Experimental Setup
	4.2 Effectiveness
	4.3 Efficiency

	5 Related Work
	6 Conclusion

