Keymantic: Semantic Keyword-based Searching in Data
Integration Systems:

Sonia Bergamaschi
University of Modena and
Reggio Emilia, Italy

Elton Domnori
University of Modena and
Reggio Emilia, Italy

Francesco Guerra
University of Modena and
Reggio Emilia, Italy

{fname.lname}@unimore.it {fname.Iname}@unimore.it {fname.lname}@unimore.it

Mirko Orsini
University of Modena and
Reggio Emilia, Italy

{fname.lname}@unimore.it

ABSTRACT

We propose the demonstration of Keymantic, a system
for keyword-based searching in relational databases that
does not require a-priori knowledge of instances held in a
database. It finds numerous applications in situations where
traditional keyword-based searching techniques are inappli-
cable due to the unavailability of the database contents for
the construction of the required indexes.

1. WHY KEYMANTIC?

Keyword queries have become a popular alternative to
structured query languages, since they do not require the
users to have a good knowledge of the way data has been or-
ganized in the source. Keyword-based searching techniques
on databases [6] and on XML documents [5] typically rely
on the construction of specialized indexes on the instances.
These indexes are used to identify at run-time the database
objects corresponding to the keywords. Unfortunately, there
are many practical application scenarios in which construc-
tion of such indexes is not possible. One such scenario is
the case of integration systems that follow the virtual in-
tegration architecture. Due to the lack of a materialized
global instance, the required indexes to support keyword
queries cannot be constructed in advance. A solution is to
construct the index based on the contents of the individ-
ual local sources. Moreover, sources do not always expose
the full details of their contents to the integration system,
but instead, provide access to it through predefined ques-
tion/answer interfaces.

With all these in mind, we have developed Keymantic [1],

*Work partially supported by project “Search-
ing for a mneedle in mountains of data”
(http://www.dbgroup.unimo.it /keymantic/), CICYT

project TIN2007-68091-C0O2-02 and EU grant ICT-215874.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.

VLDB ‘10, September 13-17, 2010, Singapore

Copyright 2010 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

Raquel Trillo Lado
University of Zaragoza,
Spain

raqueltl@unizar.es

Yannis Velegrakis
University of Trento,
ltaly

velgias@disi.unitn.eu

a system that answers keyword queries over relational data
systems by relying only on intensional knowledge, i.e., infor-
mation extracted (or provided) by the data sources, such as,
schemas, data types, lexical references and mappings, and
additional knowledge that is publicly available on the Web,
such as lexical resources, ontologies etc. The system uses
that knowledge to translate the ambiguous keyword queries
into fully specified SQL expressions.

Apart from the obvious functionality of answering key-
word queries over relational systems, Keymantic also serves
as a tool for helping users to understand how some in-
formation in which they are interested has been modelled
into large complicated and unknown schemas. The user ex-
presses his/her request of information as a keyword query.
Keymantic tries to guess the intentions of the user by gener-
ating a list of possible interpretations in terms of the under-
lying database structures. So, the user can browse through
the different interpretations and select the one whose seman-
tics is closer to the intended meaning of his/her query.

The challenging task in Keymantic is the development of
a methodology for combining different types of intensional
knowledge into a coherent framework that can efficiently
discover the possible interpretations of a keyword query and
express them as SQL. To efficiently achieve this, it is needed
to limit the number of database elements, i.e., tables, at-
tributes, or attribute values that a keyword may correspond.
This process should take into consideration the fact that any
assignment of a keyword to a database term affects the as-
signment of the remaining keywords. One of the novelties of
Keymantic is the use of the Hungarian algorithm adapted
to deal with the above challenges.

2. MOTIVATION

Consider the case of a database system with the schema
indicated in Figure 1, and the keyword query “Restaurant
Naples”. The intention of the query may be asking for in-
formation about a restaurant called Naples, a restaurant in
the city of Naples, a restaurant located in Avenue Naples,
or even restaurants that offer Naples specialities. To find
the intended semantics of the keyword query, we need to
discover to which element of the database each keyword cor-
responds. Each keyword represents a piece of information
that may have been modeled in the database as a table, as
an attribute, or as an atomic value of an attribute. Thus, the

Restaurant Booked Person Reserved Hotel
id id name id id

name name name name
address [| date [phone [| date [Sadress

specialty email service
city city city

City
name
country

description

Figure 1: A fraction of a database schema.

first challenge in the translation of the possible semantics of
a keyword query is to obtain the semantically meaningful as-
signments of each keyword in a query to some element of the
database. For instance, in the above example, the keyword
Naples may correspond to the value of the attribute Name
in the table Restaurant, or the attribute Name of the table
City, etc., while the keyword Restaurant may be mapped
to the table with the same name.

It is generally accepted the fact that keywords in a query
are not independent. It is natural to assume that they
express different features of the concept that the query is
about. Thus, any assumption about the semantics of one of
the keywords, indirectly affects the possible semantics of the
rest. For instance, in the keyword query “Restaurant name
Naples”, if we assume that the first keyword is assigned to
the table Restaurant, then the keyword name is likely to
represent the attribute Name of the table Restaurant and be
mapped to it. Furthermore, assuming the previous assign-
ments, the third keyword is likely to represent the actual
name of the restaurant, thus, it should be considered to be
a value of the attribute Name of the table Restaurant. This
kind of interdependency among the possible mappings of
the keywords in a query can significantly reduce the differ-
ent assignments that have to be considered in the process of
translating the keyword query into SQL.

The order of the keywords in a query is also playing an
important role [4]. The intention of the query “restaurant
Obama New York” is probably looking for “the restaurant
called Obama in New York city”, while the intention of
“restaurant New York Obama” is probably for “the restau-
rant in New York city that Obama has visited”.

An assignment of keywords to database elements is not
enough to specify the full semantics of a keyword query. It
is also important to understand how the database structures
are related to each other. This is typically determined by the
different join paths in the relational database. For instance,
consider the query “Person USA” with the first keyword
mapped to the table Person and the second to the value of
the attribute Country in the table City. As it can be seen
in Figure 1 there are different join paths between the table
Person and and the attribute Country of the table City.
Considering the shortest one means that the keyword query
is about a person living in the USA, while considering the
one that goes through Hotel means that the query is about
persons that have reserved hotels located in the USA.

Finding the different semantic interpretations of a key-
word query turns out to be a combinatorial problem which
can be solved by an exhaustive enumeration of the different
assignments to database structures and values. However,
internal and external knowledge can help eliminating map-
pings that are likely not to lead to meanings intended by the
user. For instance, given the keyword query 320-463-1463,
and knowing that this is typically the format of a phone

number, an interpretation based on an assignment of the
keyword to the attribute Address is unlikely to be among
the ones intended by the user.

3. CHALLENGES AND SOLUTIONS

We call a configuration any mapping of the keywords in
a query into the vocabulary of a database (Vp), i.e., ta-
ble names, their attributes and their respective domains.
The latter ones are referred to value database terms, as op-
posed to the schema database terms (the tables and the
attributes).

Since each keyword can be mapped to any database term,
there are 2+5°!|R;| + |D| alternatives to which a query
keyword can be mapped, with |R;| denoting the arity of the
relation R; and |D| the number of tables in the database.
Based on this, and on the fact that no two keywords can be
mapped to the same database terms, for N keywords, there
% possible configurations. The decision to map
each keyword to one database term is a result of two factors.
First, the desire to generate interpretations of the keyword
query in the form of SPJ queries. If keywords are allowed to
be mapped to different terms, this will lead to queries with
disjunctions not only at the attribute level, but also at the
table level, which will make factorial the number of possible
interpretations. Furthermore, through studies on a number
of real keyword query sets, we have found only exceptional
cases in which a keyword within a query has at the same
time more than one meaning, something that would mean a
mapping of the keyword to more than one database terms.

Of course, not all the configurations are equal: we in-
troduce the notion of a weight between a keyword and a
database term to offer a quantitative measure for the rel-
ativeness of a keyword to a database term, and indirectly,
the likelihood that the semantics of the keyword in the in-
tended interpretation of the query is the one described by
the respective database term. The sum of the weights of the
mappings in the configuration can serve as a quantitative
measure for the importance of a configuration in describing
the intended keyword semantics.

The naive approach for selecting the best configurations is
the computation of the score of each possible configuration
and then selecting those with the highest score. Due to the
amount of possible combinations, such an approach is un-
feasible. The problem of computing the mapping with the
maximum score without an exhaustive computation of the
scores of all the possible mappings is known in the literature
as the problem of Bipartite Weighted Assignments [3]. Un-
fortunately, existing algorithms to solve this problem suffer
from two main limitations. Firstly, they do not consider in-
terdependencies that may exist between the mappings, apart
from the mutual exclusiveness. Nevertheless, exploiting such
interdependencies may improve the performances, since key-
words in a query typically all refer to the same context. Sec-
ondly, they provide the single best mapping, instead of the
best ones.

To cope with the first limitation, we introduce two differ-
ent kinds of weights, the intrinsic, and the contextual. In-
trinsic weights measure the likelihood that a keyword should
be mapped to a database term independently of the other
query keywords or database terms. It is based on syntactic,
semantic and structural factors such as the attribute names,
relation names, etc., or other auxiliary external sources,

are

Query Keywords + Schema Information

v v

-
% Intrinsic Weight Computation | | Intrinsic Weight Computation
b of Schema Database Terms of Value Database Terms

N vw
A

N (Selection of Best Mappings
oy to Schema Terms
5 Mappings M 5‘_

..... with i=1..n
4 Y

© Contextualization of VW based on M,

g Selection of Best Mappings to Value Terms
(2] Pairs < M*, M", >
_____________ with i=1..n and k=1..m _
< . . q
a [Generation of the Configurations]

[

n Configurations C,

''''' with k=1..m
Y

n
% [Generation of the Interpretations]

-

(%)

Figure 2: The keyword query translation process.

such as vocabularies, ontologies, domains, etc. On the other
hand, a contextual weight is used to measure the relativeness
of a keyword to a database term by taking into considera-
tion the mappings of other keywords. This is motivated by
the fact that the assignment of a keyword to a database
term may increase or decrease the likelihood that another
keyword corresponds to a certain database term.

To cope with the second limitation, we have developed a
novel algorithm for computing the best mappings based on
the Hungarian (a.k.a., Munkres) algorithm [2].

Figure 2 provides an overview of the translation process
of the keyword queries to SQL. A special data structure,
called weight matriz, is heavily used in that process. The
weight matriz is a two-dimensional array with one row for
each keyword in the keyword query, and one column for
each database term. The value of a cell represents the
weight between the respective keyword and the database
term. Two parts (i.e., sub-matrices) can be distinguished
in the weight matrix. One, denoted as SW, corresponds to
the database terms related to schema elements, i.e., schema
database terms (relational tables and attributes), and an-
other, denoted as VW, that corresponds to attribute values,
i.e., value database terms (the domains of the attributes).

Intrinsic Weight Computation. The weight matrix is
populated with the intrinsic weights. The computation of
these weights is achieved by exploitation and combination
of a number of semantic techniques based on structural and
lexical knowledge extracted from the data source, and ex-
ternal knowledge bases. The output of this step are the
populated SW and VW submatrices of the weight matrix.

Selection of Best Mappings to Schema Terms. Hav-
ing the populated weight matrix, a number of prominent
mappings of certain keywords to schema database terms are
generated. The input to this task is the SW sub-matrix
and the outcome is a series of mappings M;°, with i=1..n.
Each such mapping assigns a number of keywords to schema
database terms. Those that remain unassigned will be later

Algorithm 1: Keywords to DB Terms Assignment
Input: I(i;;) where I=SWor I=VW
Output: M! = {M{,..., M!}: Mappings generated by I

MAPPING(I, Warax)
(1) tempM = Jipt + HUNGARIANEgq: * (1)
(2) W « Zipt

(3) MT «— tempM

(4) if (W >cxWaax)

(5) Waax < W

(6) while (W > ¢x Wyrax)

(7) foreach i, € tempM

(8) ipt € T < —100

9) Mapping(I, W ax)

mapped to value database terms. From the different par-
tial mappings only those that have a score higher than a
specific threshold are kept. The generation of the mappings
is performed by the Hungarian algorithm that we have ex-
tended not to stop after the generation of the best mapping
but to continue to the generation of the second best, the
third, etc. Furthermore, some of the internal steps of the
algorithm have been modified so that the weight matrix is
dynamically updated every time that a mapping of a key-
word to a database term is decided during the computa-
tion. This adaptation is needed to reflect the consequences
of a specific assignment to the semantic relativeness of the
remaining mappings to the remaining unmapped database
terms. Algorithm 1 depicts the overall process of comput-
ing the set of mappings of keywords to database terms, given
the weight matrix. The HUNGARIAN g, expression refers
to our extended version of the Hungarian algorithm. The
original algorithm for rectangular matrices has a complexity
O(n2 xm), where n is the number of keywords and m is the
number of databases terms. Extending the algorithm to con-
sider contextual weights brings the complexity to O(n3 *m2)
which is due to the fact that a mapping may affect any of
the other mappings, thus, in the worst case, (n—1)*(m—1)
weight updates may need to take place. Nevertheless, this
worst case rarely happens since only a subset of the matrix
is updated in each iteration, and, due to the threshold, not
all the possible updates are evaluated.

Contextualization of VW and selection of Best Map-
pings to Value Terms. As a third step, each partial map-
ping of keywords to schema terms M7 is associated to a
partial mapping M}, of the remaining keywords to value
database terms. Mappings of keywords to attribute values
are computed by analyzing the submatrix VW with a two-
phase process. Firstly, each partial mapping M, generates
a new updated VW submatrix, where the intrinsic value
weights VW initially computed are updated to reflect the
added value provided by the mapping M7 of certain key-
words to schema database terms. Besides, the weights in
VW of the keywords that have been mapped in M; are
set to zero. Secondly, given an updated VW submatrix,
the most prominent mappings of the unmapped keywords
to value database terms are generated. This is achieved by
using again the adapted method of the Hungarian algorithm.
The result is a series of partial mappings My, with k=1..m;,
where ¢ identifies the mapping M; on which the computa-
tion of the updated matrix VW was based. The mapping
MY is partial because it involves only the keywords that had

I Keyword Mapper
HungarianExt \
Manager

\

Path Selector

SQL Builder

~

\
I
I
I
|
I
1

~~__ Wrapper
— > Metadata Query
“ Extractor Engine

Figure 3: Keymantic architecture

a

not been mapped to some schema database term in M.

Generation of the Configurations. Each mapping M,
together with its associated mapping M7 form a configu-
ration Cj. The score of the configuration is the sum of the
weights of the mapped pairs of keywords and database terms
in M}, and M?.

Generation of the Interpretations. Having computed
the best configurations, the SQL queries can be generated.
Recall that a configuration consists only of mappings of the
keywords to database terms. It does not specify how these
terms are related to each other. Thus, in the presence of dif-
ferent join paths among the elements involved in a configura-
tion, multiple queries may result from a single configuration.
Different strategies can be used to select the most prominent
one, or provide an internal ranking based on different crite-
ria, such as the length of the join paths [6]. However, this
is not the main focus of the current work and we will not
elaborate further on it. We adopt a greedy approach that
computes a query for every possible combination where the
database terms involved in the configurations are related
and the user may select the shorthest or another join-path
among them.

4. SYSTEM IMPLEMENTATION

Keymantic consists of three main modules, as shown in
Figure 3: the Wrapper responsible for extracting the source
metadata, the Keyword Mapper that generates the different
configurations alongside their weights, and the Interpreta-
tion Generation that generates the final SQL queries.

S. DEMONSTRATION HIGHLIGHTS

There are four main messages that we would like to com-
municate to the VLDB participants through our demonstra-
tion scenario. First, that keyword based searching can be
successfully implemented even in the cases where access to
the source data is not available. Second, that a combination
of different metadata information provides expected trans-
lations of keyword queries into SQL interpretations. Third,
that our extension of the Hungarian algorithm significantly
reduces the number of possible SQL interpretations of a key-
word query to those semantically meaningful. Finally, we
will show that a combination of keyword queries and inten-
sional information is effective for browsing large complicated
data sources.

The demonstration will consist of two phases. In the first
phase, we will load a number of different sources such as a
large tourist database, IMDB, etc., and we will explain how
the metadata information of the sources is incorporated into

%] Keymantic S[E] =]

Keywords | Advanced | Resutt | Configuration

Configuration Paths

® restaurantcity

re
® 279] ci
Lor

© restaurant;booked:personcity

e

© 250 ci ity

London is value ofcity.country

© restaurant;booked:personreserved;notelcity
il D | | [T D]
Graph
< — hote

person

booked
reserved

Figure 4: Part of the Keymantic interface.

our system. Then, we will run a number of keyword queries
against these sources, and explain the results. The partic-
ipants will be free to run their own queries, but a num-
ber of specially chosen keyword queries will be available to
demonstrate how the system handles ambiguous queries that
generate multiple possible mappings, each one with multi-
ple possible paths associated. Query processing time will
be provided alongside the different alternatives that have
been considered to prove the effectiveness of the Hungarian
algorithm. Queries of different sizes will be tested to also
demonstrate how our algorithms scale up. The returned re-
sults to the keyword queries will be accompanied by the SQL
query representing the interpretation of the keyword query
that has been followed, in order to increase the confidence
of the user for the quality of the returned results.

During the second phase, the users will pose keyword
queries and the system will display the different interpre-
tations without actually executing them. By browsing these
interpretations, the users will be able to get a taste of the
parts of the sources that are related to their interest (as de-
scribed by the keyword query), something that would have
been hard to do before due to the size and the complex-
ity of the schemas. Furthermore, the users will be able to
select those interpretations that they believe that more ac-
curately reflect the semantics they had in mind when they
were creating the keyword query. Thus, the user can guide
the system to return results that are very related, increasing
the precision of the whole process. Figure 4 illustrates how
the different interpretations are displayed to the user.

REFERENCES

[1] S. Bergamaschi, E. Domnori, F. Guerra, R. T. Lado, and
Y. Velegrakis. Keyword-based Searching in Databases
using Intensional Knowledge. Submitted, 2010.

[2] F. Bourgeois and J.-C. Lassalle. An extension of the
Munkres algorithm for the assignment problem to rect-
angular matrices. Comm.of ACM, 14(12):802-804, 1971.

[3] R. Burkard, M. Dell’Amico, and S. Martello. Assignment
Problems. STAM, Philadelphia, 2009.

[4] R. Kumar and A. Tomkins. A Characterization of On-
line Search Behavior. IEEE Data Engineering Bulletin,
32(2):3-11, 2009.

[5] Z. Liu, J. Walker, and Y. Chen. Xseek: A semantic xml
search engine using keywords. In VLDB, pages 1330-
1333. ACM, 2007.

[6] J. X. Yu, L. Qin, and L. Chang. Keyword Search in
Databases. Synthesis Lectures on Data Management,
Morgan & Claypool Publishers, 2009.

