
Comparing and Evaluating Mapping Systems
with STBenchmark

Bogdan Alexe
UC Santa Cruz

abogdan@cs.ucsc.edu

Wang-Chiew Tan
UC Santa Cruz

wctan@cs.ucsc.edu

Yannis Velegrakis
University of Trento

velgias@disi.unitn.eu

ABSTRACT
Schema mappings are fundamental building blocks in many infor-
mation integration applications. Designing mappings is a time-
consuming process and for that reason many mapping systems have
been developed to assist in the task of designing mappings. How-
ever, to the best of our knowledge, a benchmark for comparing and
evaluating these systems has not yet been developed. We demon-
strate STBenchmark, a benchmark that we have developed for eval-
uating mapping systems. Our demonstration will showcase the dif-
ferent aspects of mapping systems that STBenchmark evaluates,
highlight the results of our comparison and evaluation of four map-
ping systems, as well as make a case for the need for a standard
specification input mechanism to mapping systems in order to make
progress towards the development of a uniform testbed or reposi-
tory for schema mappings and data exchange tasks.

1. INTRODUCTION
A fundamental problem in information integration is generating

mappings between schemas. A mapping is a precise specification
of how an instance over one schema, called the source schema, is to
be translated into an instance over a second schema, called the tar-
get schema. Designing mappings is a time-consuming process due
to the high heterogeneity of the typically independently developed
schemas and many mapping systems have been developed to make
this task easier. A mapping system is a visual programming system
with the goal of making it easy for a designer to generate mappings.
The interfaces of mapping systems provide a graphic representation
of the source and target schema, and allow the design of mappings
by associating elements between the two schemas. The association
can range from very simple, such as a direct line between two el-
ements, to more complex, such as an association of two or more
elements through a graphical box that denotes a function applica-
tion. The visual specification is then compiled into some executable
code, referred to as the transformation script, that is typically ex-
pressed using languages such as XSLT, XQuery, Java or C.

Examples of mapping systems include Altova Mapforce [11],
AquaLogic [5], IBM Rational Data Architect [10], Microsoft
BizTalk Mapper [18], which is embedded in Microsoft Visual Stu-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
Copyright 2008 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

dio, Stylus Studio [15], and the research prototypes HePToX [3]
and Clio [8]. Visual interfaces for specifying XML-to-XML [6, 7]
or relational-to-relational [21] transformations can also be consid-
ered mapping systems. Unfortunately, until today, there have been
only limited efforts on evaluating the mapping [4] or the data trans-
formation process [17] and no generic benchmark exists to com-
pare and evaluate different mapping systems. Similar to the moti-
vation of benchmarking relational database management systems, a
benchmark for mapping systems is important for assessing the rel-
ative merits of the different systems, which in turn is important for
customers in order to make the right investment decisions. In fact, a
recent workshop on information integration [2] also raised the need
for developing benchmarks for data exchange systems. We pro-
pose to demonstrate STBenchmark (http://www.stbentchmark.org),
a benchmark we have developed for that purpose. The following
section describes the challenges that were faced in the develop-
ment of the benchmark while Section 3 provides an overview of
the demonstration.

2. CHALLENGES AND SOLUTIONS
Expressing application scenarios. A benchmark typically con-
sists of a set of standard application scenarios that can be tested
against different systems that offer similar functionalist’s (e.g., the
popular TPC-H [16] and XMark [14] benchmarks). For a conse-
quence, the application scenarios must be clearly understood and
correctly interpreted by the different systems under evaluation. Un-
like benchmarks for other types of systems, such as relational [16]
or XML query processing engines [14], it is considerably more
challenging to design a benchmark for mapping systems. A ma-
jor difficulty arises from the fact that there is no standard input
language or input methodology for mapping systems. Benchmarks
for query engines, for instance, can exploit the standard query lan-
guage, e.g., SQL or XQuery, to precisely communicate the bench-
mark application scenarios to different query processing engines.
Mapping systems, on the other hand, do not have a standard set of
visual metaphors in their graphical interfaces. Even if they do use
similar metaphors, these metaphors may be interpreted differently
by the various mapping systems. Consider, for example, the sim-
ple visual specification illustrated in Figure 1(a) that intuitively de-
scribes how a table is copied from one schema to another. The lines,
which may be the result of a schema matching process, indicate the
correspondences between the elements. This visual specification
is compiled into nonequivalent XSLT scripts by different mapping
systems. The XSLT script that is generated by Altova Mapforce
[11] groups all names of proteins in the source, followed by all
accession information and creation dates, under a single 〈Protein〉
tag. (ref. Figure 2(b) which is the result of applying Mapforce’s
XSLT script on the source instance shown in Figure 2(a).) Thus, in

(a)

Name

Created

Target

Accessionaccession

Protein [0−*]

Source

name

created

Protein [0−*]

(b)

Target

Name
UniqueName

Id

Class
Parent
Rank

EmblCode

Source

id
name

Name [0−*]

uniqueName

rank
parentId
taxId

Node [0−*]

emblCode

class

Taxon [0−*]

Figure 1: Mapping Scenarios: (a) Copy (b) Denormalization

the case when the source instance consists of more than one pro-
tein, the target instance generated by the XSLT script does not even
conform to the target schema. In fact, to specify a transformation
that copies the source instance, Mapforce requires an additional
line between the Protein elements in Figure 1(a). The XSLT script
that is generated by Stylus Studio [15] creates a single 〈Protein〉 tag
within which there are single 〈Name〉, 〈Accession〉 and 〈Created〉
tags. Only the name, accession information and creation date of the
first protein in the source are listed under the 〈Name〉, 〈Accession〉
and 〈Creation〉 tags respectively. (ref. Figure 2(c).) Microsoft’s
BizTalk Mapper [18], IBM Rational Data Architect [10] and Clio
[12] generate XSLT scripts that return a copy of the source instance.
(ref. Figure 2(d).)

The above example is an indication of the fact that the bench-
mark application scenarios cannot be specified as visual specifica-
tions. To overcome this problem, the benchmark application sce-
narios were designed as mapping scenarios. A mapping scenario is
a triple (S,T,P), where S and T are the source and target schema,
respectively, and P is a precise description of how an instance of S
is to be translated into an instance of T. Since mapping systems do
not take mapping scenarios as input, the benchmark user is required
to express each mapping scenario as a visual specification through
the graphical interface of the mapping system.

STBenchmark consists of three different components, each one
used to evaluate a different aspect of a mapping systems:

(i) Basic Mapping Scenarios and Source Instances. STBench-
mark offers a set of basic mapping scenarios that we believe rep-
resents a minimum set of transformations that should be readily
supported by any mapping system. This means that a mapping de-
signer should be able to obtain the desired executable code through
the visual interface of the mapping system without having to mod-
ify the executable code. The set consists of 11 basic mapping sce-
narios derived by a careful analysis of constructs commonly needed
across different information integration applications, such as data
exchange, data warehouses, XML publishing, schema evolution,
real-world mapping specifications as well as the scientific litera-
ture in these topics and the experience of the authors in these areas.
Some of the basic mapping scenarios include copying (as depicted
in Figure 1(a)), horizontal and vertical partitioning, object fusion,
identifier generation, normalization and denormalization (see Fig-
ure 1(b)), flattening and nesting, and constant value assignment.
While we believe that these scenarios capture the majority of data
transformations that occur in practice and have wide industry rele-
vance, they are not intended to represent all possible mapping sce-
narios that may occur in practice.

For each mapping scenario, STBenchmark also provides a
source instance which consists of data extracted from real-world
instances. Hence, the executable code generated by the mapping
systems can be evaluated using these “real” instances.

(c)

 <Protein>
 <name>p1</name>
 <accession>A1</accession>
 <created>01/12/06</created>
 </Protein>
 <Protein>
 <name>p2</name>
 <accession>A2</accession>
 <created>03/15/04</created>
 </Protein>
</Source>

<Target>
 <Protein>
 <Name>p1</Name>
 <Accession>A1</Accession>
 <Created>01/12/06</Created>
 </Protein>
 <Protein>
 <Name>p2</Name>
 <Accession>A2</Accession>
 <Created>03/15/04</Created>
 </Protein>
</Target>

<Target>
 <Protein>
 <Name>p1</Name>
 <Accession>A1</Accession>
 <Created>01/12/06</Created>
 </Protein>
</Target>

<Target>
 <Protein>
 <Name>p1</Name>
 <Name>p2</Name>
 <Accession>A1</Accession>
 <Accession>A2</Accession>
 <Created>01/12/06</Created>
 <Created>03/15/04</Created>
 </Protein>
</Target>

(a) (b)

(d)

<Source>

Figure 2: (a) Source Instance (b,c,d) Target Instances

(ii) Generating Complex Mapping Scenarios and Instances.
STBenchmark also provides a mapping scenario generator (SGen)
and an instance generator (IGen) that can be used to test a map-
ping system with mapping scenarios (along with source instances)
of varying complexity and size.

SGen takes as input a set of configuration parameters and re-
turns as output a mapping scenario. SGen is capable of generating
complex mapping scenarios of arbitrary sizes by combining and in-
termixing basic mapping scenarios in different ways based on the
configuration parameters. Hence, the mapping scenarios generated
by SGen can simulate real world mappings where many different
transformations usually occur simultaneously from one schema to
another. For example, the configuration parameters can be used
to specify schema properties such as the level of nesting in the
schemas, the number of subelements of each schema element, the
number of elements involved in a join between two elements, the
length of the join paths formed in the schemas, the kind of joins
(star or chain) etc. By sampling values from Gaussian distribu-
tions based on the configuration parameters, SGen is able to gener-
ate schemas that look natural.

IGen, the instance generator, is built on top of ToXGene [1] and
takes as input a schema and a set of configuration parameters and
returns as output an instance that conforms to the given schema.
The configuration parameters are used to specify the characteristics
of the instance to be generated, such as the number of complex
elements in the instance, the maximum length of generated string
values and the allowed ranges for numeric values.

SGen and IGen have been implemented in such a way that they
are able to reproduce the same output when given the same input.
Hence, SGen and IGen produce repeatable results independently
of factors such as time, hardware platforms, or operating systems.
Towards this goal, SGen and IGen are implemented in Java and
make use of the fact that the random number generators produce
identical streams of pseudo-random numbers when given the same
input seed.

It is also worth mentioning that by using SGen and ignoring T
and P in the output of SGen, SGen is in effect a schema generator.

(iii) A Usability Model for Evaluating Mapping System Inter-
faces. Since all mapping systems that we have encountered pro-
vide a graphical interface to help reduce the effort required by a

Figure 3: STBenchmark’s graphical user interface for the configuration parameters of SGen and IGen.

mapping designer to generate mappings, STBenchmark also comes
with a simple usability (SU) model that is able to provide a first-cut
measure on the amount of effort required of a mapping designer
to generate mappings through a graphical interface. In this model,
effort is simply quantified as the number of mouse actions and the
number of keystrokes used for text input. Three different types of
mouse actions are captured by the model, namely, dragging actions,
single and double mouse clicks. A cost model that quantifies drag-
ging actions and text inputs with higher costs than single or double
mouse clicks is also provided. While the SU model can provide a
quick measure on the effort required to implement the same map-
ping scenario across different mapping systems, we emphasize that
it is not meant to replace a much needed comprehensive human-
computer interaction study (which is not the subject of this paper)
on the usability of mapping systems.

It becomes clear from the above three components that
STBenchmark is not intended to benchmark the schema match-
ing process which is concerned with obtaining a set of mapping
elements, where each mapping element indicates how elements of
one schema relate to elements of the other schema. Some map-
ping systems are equipped with a matching module that (semi-
)automatically derives these mapping elements, while in many oth-
ers, the mapping elements are manually specified through the visual
interface. Thus, considering the matching process in the bench-
mark may not have been fair for the latter category of systems. Fur-
thermore, a number of proposals already exist for schema matching
benchmarks [20, 19]. These could be easily integrated in STBench-
mark if needed.

3. DEMONSTRATION OVERVIEW
Our demonstration will illustrate how STBenchmark is used to

evaluate mapping systems. In the course of our demonstration, we
will also describe some interesting findings about the mapping sys-
tems that we have evaluated based on STBenchmark.

First, we will show that visual specifications cannot be used to
specify benchmark application scenarios (or test cases) to mapping
systems. We show this by demonstrating that different mapping
systems interpret the same visual specification differently. For ex-
ample, we will implement scenarios similar to the one presented
in Figure 1(a) on four different mapping systems and show that, as
in the case presented in Section 2, mapping systems may generate
nonequivalent XSLT transformation scripts. To make our demon-

stration complete, we will illustrate that these XSLT scripts are
nonequivalent by executing them against a simple source instance
and show that we obtain different outputs under the same visual
specification.

Second, we will showcase our 11 basic mapping scenarios and
demonstrate how they can be implemented in different mapping
systems. In the course of implementing a mapping scenario with
different mapping systems, we will also demonstrate the differ-
ences in the level of support from different mapping systems in
specifying mappings. For example, we will demonstrate that map-
ping scenarios, such as the one in Figure 1(b), can be easily imple-
mented through the graphical interface of some mapping systems.
We will also demonstrate how the same mapping scenario may be
difficult or impossible to implement through the visual interface of
some other mapping systems. In addition, we demonstrate that the
degree of difficulty in implementing these mapping scenarios can
be captured through our simple usability model.

Third, we will demonstrate how SGen can be used to generate
complex mapping scenarios by (1) combining extended versions of
basic mapping scenarios and (2) intermixing extended versions of
basic mapping scenarios. Type (1) mapping scenarios model real-
world mappings where different types of transformations occur in
parallel in different parts of a schema while type (2) mapping sce-
narios model real-world mappings where different types of trans-
formations occur simultaneously in the same part of a schema. We
will also demonstrate that SGen can combine scenarios of types (1)
and (2) and generate mapping scenarios of arbitrary sizes. In addi-
tion, we will also demonstrate how our instance generator IGen can
be used for creating instances that conform to a given schema. We
will also show how SGen and IGen can be used together to gen-
erate mapping scenarios and instances that conform to the source
schemas of the mapping scenarios, as well as how these instances
can be used for the data transformations specified in the mapping
scenarios. Finally, we will also demonstrate how SGen and IGen
can be used as general purpose schema and instance generators.
Fig. 3 shows our graphical user interface for SGen and IGen.

Fourth and last, our demonstration will also illustrate some of the
interesting observations we gathered while evaluating four map-
ping systems with STBenchmark. For example, we will demon-
strate some peculiarities in the XSLT scripts generated by some
mapping systems and show, through the use of SGen and IGen,
how they affect the performance of the generated XSLT scripts in

general. We will also show how some mapping systems drastically
reduce the amount of effort required to implement a mapping sce-
nario in general through a graceful use of a schema matching mod-
ule that goes hand-in-hand with the semantics of visual metaphors
used in the graphical interface. Finally, we will demonstrate how
the automatic handling of source and target schema constraints can
help reduce the amount of effort required to implement a mapping
scenario.

4. CONCLUDING REMARKS
Benchmarks are typically evaluating three main aspects of sys-

tems: expressiveness, correctness, and performance. Depending on
the nature of the systems that are to be evaluated, a benchmark may
focus more on one of these aspects as opposed to the others. For
instance, query engine benchmarks, such as TPC-H [16], evaluate
the expressiveness and correctness of the engines by providing a
series of queries that need to be answered correctly, but they em-
phasize mostly on how well the engines scale. Towards this goal,
they provide instance generators in order to test the engines with
instances of different sizes. On the other hand, information inte-
gration system benchmarks, like THALIA [9], focus more on the
expressiveness and correctness aspect. They provide a series of test
scenarios along with data instances, all drawn from real life appli-
cations. In this work, we are proposing to demonstrate STBench-
mark, a benchmark that we have developed for comparing and eval-
uating mapping systems. To the best of our knowledge, this is the
first benchmark developed for such systems. One of the advantages
of STBenchmark is that it equally focuses on the evaluation of all
the different aspects of a mapping system. Through the set of ba-
sic mapping scenarios, it evaluates its expressive power. Through
the real life source instances accompanying every basic mapping
scenario, it evaluates its correctness. Through the use of the SGen
and IGen modules it evaluates how well the systems scale not only
in terms of instance size but also in terms of schema size and of
transformation complexity. Finally, since a mapping system is a
graphical tool, STBenchmark, through its usability model, evalu-
ates the effort required by the mapping designer in the mapping
generation process.

In addition to what we plan to demonstrate as described earlier,
we also hope to share some of our experience with mapping sys-
tems through this demonstration: For example, our experience indi-
cates that mapping systems share a lot of commonality in terms of
the visual metaphors and constructs used for designing mappings.
However (and unfortunately), there is currently a lack of standard
in interpreting these visual metaphors and constructs. Hence, even
though mapping systems take visual specifications as input, the
transformation functions in our basic mapping scenarios are not
specified as visual specifications and we leave to the benchmark
user the task of creating the appropriate visual specification of each
mapping scenario on each mapping system. From our study, we be-
lieve that it is crucial to develop a standard (either by standardizing
the interpretation of visual metaphors and constructs and extending
them to achieve more expressiveness, e.g. [13], or by developing a
standard mapping specification language) for specifying inputs to
mapping systems. Such a standard will not only serve to standard-
ize the specifications of basic mapping scenarios in STBenchmark
and the output of SGen, but also serve as an important step towards
the development of a uniform testbed and repository for schema
mappings and data exchange tasks [2].
Acknowledgment: Work partly supported by NSF CAREER
Award IIS-0347065, NSF grant IIS-0430994, EU Marie-Currie
MIRG-CT-2006-046548 and EU STREP-215874.

References
[1] D. Barbosa, A. O. Mendelzon, J. Keenleyside, and K. A.

Lyons. Toxgene: An extensible template-based data gener-
ator for xml. In WebDB, pages 49–54, 2002.

[2] Bertinoro Workshop on Information Integration.
http://www.dis.uniroma1.it/˜lenzerin/INFINT2007/.

[3] A. Bonifati, E. Q. Chang, T. Ho, and L. V. S. Lakshmanan.
HepToX: Heterogeneous Peer to Peer XML Databases, 2005.

[4] A. Bonifati, G. Mecca, A. Pappalardo, S. Raunich, and
G. Summa. Schema mapping verification: the spicy way. In
EDBT, pages 85–96, 2008.

[5] V. R. Borkar, M. J. Carey, D. Engovatov, D. Lychagin,
T. Westmann, and W. Wong. XQSE: An XQuery Script-
ing Extension for the AquaLogic Data Services Platform. In
ICDE, pages 1229–1238, 2008.

[6] D. Braga, A. Campi, and S. Ceri. QBE (query y xample):
A visual interface to the standard xml query language. ACM
TODS, 30(2):398–443, 2005.

[7] M. Erwig. Xing: a visual xml query language. J. Vis. Lang.
Comput., 14(1):5–45, 2003.

[8] L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and M. Roth.
Clio Grows Up: From Research Prototype to Industrial Tool.
In SIGMOD, pages 805–810, 2005.

[9] J. Hammer, M. Stonebraker, and O. Topsakal. THALIA: Test
Harness for the Assessment of Legacy Information Integra-
tion Approaches. In ICDE, pages 485–486, 2005.

[10] IBM Rational Data Architect.
http://www.ibm.com/software/data/integration/rda.

[11] Altova MapForce, Version 2007 rel.3 sp1.
http://www.altova.com.

[12] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández, and
R. Fagin. Translating Web Data. In VLDB, pages 598–609,
2002.

[13] A. Raffio, D. Braga, S. Ceri, P. Papotti, and M. A. Hernández.
Clip: a Visual Language for Explicit Schema Mappings. In
ICDE, 2008.

[14] A. R. Schmidt, F. Waas, M. L. Kersten, M. J. Carey,
I. Manolescu, and R. Busse. XMark: A Benchmark for XML
Data Management. In VLDB, pages 974–985, 2002.

[15] Stylus Studio, XML Enterprise Suite, Release 2.
http://www.stylusstudio.com.

[16] TPC Transaction Processing Performance Council.
http://tpc.org.

[17] P. Vassiliadis, A. Karagiannis, V. Tziovara, and A. Simitsis.
Towards a Benchmark for ETL Workflows. In QDB, pages
49–60, 2007.

[18] Microsoft Visual Studio 2005, Version 8.0.50727.42.
http://msdn2.microsoft.com/en-us/ie/bb188238.aspx.

[19] B. Yao, T. Ozsu, and N. Khandelwal. XBench benchmark
and performance testing of XML DBMSs. In ICDE, pages
621–633, 2004.

[20] Y.Lee, M. Sayyadian, A. Doan, and A. Rosenthal. eTuner:
Tuning Schema Matching Software using Synthetic Scenar-
ios. VLDB Journal, 16(1):97–122, 2007.

[21] M. Zloof. Query-By-Example: A Data Base Language. IBM
Sys. Journal, 16(4):324–343, 1977.

